The Role of Potassium Channels in the Regulation of the Transport Function of Rats Lymph Nodes during Inflammation

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Lymph formed in tissues necessarily passes through lymph nodes (LN), which not only perform an immune function, but also take part in lymph flow through rhythmic high-amplitude contractions. During inflammation, inducible NO synthase (iNOS) is expressed in the lymph nodes, which promotes relaxation of the LN capsule. This study examined the role of KATP- and BKCa-channels in sepsis-induced LN remodeling. Sepsis was induced in rats by cecal ligation-puncture surgery. After 12 and 24 h, mesenteric LN were removed and examined in a myograph. KATP-channels were activated by pinacidil and blocked by glibenclamide. BKCa-channels blocked TEA and activated NS 1619. The strength of tonic contraction of the LN under the action of activators and blockers was assessed. LN of septic rats named low level of tone during standard stretching. Pinacidil led to greater relaxation of LN in septic rats compared to the control group; the effect of glibenclamide was accompanied by an increase in tone. Pinacidil combined with glibenclamide did not lead to significant changes in LN tone. The use of NS 1619 was accompanied by relaxation of the LN; in the LN of septic rats, the effect was more pronounced. TEA (3 mM) led to an increase in LN tone; the LN of septic rats responded to the use of TEA with a greater contraction. We concluded that NO produced by expressed iNOS in animals with sepsis directly or indirectly activates KATP- and BKCa-channels of smooth muscle cells of the capsule in the LN, which leading to hyperpolarization of the smooth muscle cell membrane and their relaxation, which that promotes relaxation of the LN capsule and their hypertrophy of LN. In the future, KATP- and BKCa-channels of smooth muscle cells of the lymph node LN capsule may be a potential target for therapeutic intervention to correct the immune response by slowing down or accelerating the flow of lymph through the LN.

Авторлар туралы

G. Lobov

Pavlov Institute of Physiology RAS

Хат алмасуға жауапты Автор.
Email: lobovgi@infran.ru
Russia, St. Petersburg

Әдебиет тізімі

  1. Roe K (2021) An inflammation classification system using cytokine parameters. Scand J Immunol 93(2): e12970. https://doi.org/10.1111/sji.12970
  2. Schmid-Schönbein GW (2006) Analysis of inflammation. Annu Rev Biomed Eng 8: 93–131. https://doi.org/10.1146/annurev.bioeng.8.061505.095708
  3. Yeung YT, Aziz F, Guerrero-Castilla A, Arguelles S (2018) Signaling Pathways in Inflammation and Anti-inflammatory Therapies. Curr Pharm Des 24(14): 1449–1484. https://doi.org/10.2174/1381612824666180327165604
  4. Robinson N, Ganesan R, Hegedűs C, Kovács K, Kufer TA, Virág L (2019) Programmed necrotic cell death of macrophages: Focus on pyroptosis, necroptosis, and parthanatos. Redox Biol 26: 101239. https://doi.org/10.1016/j.redox.2019.101239
  5. Лобов ГИ (2023) Иммунная функция лимфатической системы. Успехи физиол наук 54(3): 3–24 [Lobov GI (2023) Immune function of the lymphatic system. Advanc Physiol Sci 54(3): 3–24. (In Russ)]. https://doi.org/10.31857/S0301179823030049
  6. Kesler CT, Liao S, Munn LL, Padera TP (2013) Lymphatic vessels in health and disease. Wiley Interdiscip Rev Syst Biol Med 5(1): 111–124. https://doi.org/10.1002/wsbm.1201
  7. Thierry GR, Gentek R, Bajenoff M (2019) Remodeling of reactive lymph nodes: Dynamics of stromal cells and underlying chemokine signaling. Immunol Rev 289(1): 42–61. https://doi.org/10.1111/imr.12750
  8. Chang JE, Turley SJ (2015) Stromal infrastructure of the lymph node and coordination of immunity. Trends Immunol 36(1): 30–39. https://doi.org/10.1016/j.it.2014.11.003
  9. Lobov GI, Pan’kova MN, Abdreshov SN (2015) Transport function of the lymph nodes in young and old animals. Adv Gerontol 28(4): 681–686.
  10. Ikomi F, Kousai A, Ono N, Ohhashi T (2002) Electrical stimulation-induced alpha1- and alpha2-adrenoceptors-mediated contractions of isolated canine lymph nodes. Auton Neurosci 96(2): 85–92. https://doi.org/10.1016/s1566-0702(01)00363-0
  11. Lobov GI, Pan’kova MN (2011) Mechanical properties of lymph node capsule. Bull Exp Biol Med 151(1): 5. https://doi.org/10.1007/s10517
  12. Pastukhova IA (1986) Myocytes of the inguinal lymph nodes. Arkh Anat Gistol Embriol 90(6): 32–37.
  13. Lobov GI (2021) Role of Endogenous Hydrogen Sulfide in Relaxation of the Lymph Node Capsule in LPS induced Inflammation. J Evol Biochem Physiol 57(6): 1363–1372. https://doi.org/10.1134/S0022093021060156
  14. Lobov GI (2022) Contractile Function of the Capsule of the Bovine Mesenteric Lymph Nodes at the Early Stage of Inflammation. J Evol Biochem Physiol 58(6): 2109–2123. https://doi.org/10.1134/S0022093022060370
  15. Gao Y, Yang Y, Guan Q, Pang X, Zhang H, Zeng D (2010) IL-1beta modulate the Ca2+-activated big-conductance K channels (BK) via reactive oxygen species in cultured rat aorta smooth muscle cells. Mol Cell Biochem 338(1–2): 59–68. https://doi.org/10.1007/s11010-009-0338-4
  16. Wu K, Zhao L, Wang Y, Liu P, Cheng S, Yang X, Wang Y, Zhu Y (2023) Mechanism of large-conductance calcium-activated potassium channel involved in inflammatory response in sepsis. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 35(5): 469–475. https://doi.org/10.3760/cma.j.cn121430-20220314-00240
  17. Chen SJ, Wu CC, Yang SN, Lin CI, Yen MH (2000) Abnormal activation of K+ channels in aortic smooth muscle of rats with endotoxic shock: electrophysiological and functional evidence. Br J Pharmacol 131(2): 213–222. https://doi.org/10.1038/sj.bjp.0703564
  18. Cotton KD, Hollywood MA, McHale NG, Thornbury KD (1997) Outward currents in smooth muscle cells isolated from sheep mesenteric lymphatics. J Physiol 503 (Pt 1): 1–11. https://doi.org/10.1111/j.1469-7793.1997.001bi.x
  19. von der Weid PY, Rehal S, Dyrda P, Lee S, Mathias R, Rahman M, Roizes S, Imtiaz MS (2012) Mechanisms of VIP-induced inhibition of the lymphatic vessel pump. J Physiol 590(11): 2677–2691. https://doi.org/10.1113/jphysiol.2012.230599
  20. Wu TF, Carati CJ, Macnaughton WK, von der Weid PY (2006) Contractile activity of lymphatic vessels is altered in the TNBS model of guinea pig ileitis. Am J Physiol Gastrointest Liver Physiol 291(4): G566– G574. https://doi.org/10.1152/ajpgi.00058.2006
  21. Groneberg D, Konig P, Wirth A, Offermanns S, Koesling D, Friebe A. (2010) Smooth muscle-specific deletion of nitric oxide-sensitive guanylyl cyclase is sufficient to induce hypertension in mice. Circulation 121: 401–409.
  22. Zhang LM, Niu CY, Zhao ZG, Si YH, Zhang YP (2012) ATP-sensitive potassium channel involved in modulation of nitride oxide regulating contractile activity of isolated lymphatics from hemorrhagic shock rats. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue 8: 457–460.
  23. Meisheri KD, Khan SA, Martin JL (1993) Vascular pharmacology of ATP-sensitive K+ channels: Interactions between glyburide and K+ channel openers. J Vasc Res 30: 2–12.
  24. Hotchkiss RS, Moldawer LL, Opal SM, Reinhart K, Turnbull IR, Vincent JL (2016) Sepsis and septic shock. Nat Rev Dis Primers 2: 16045. https://doi.org/10.1038/nrdp.2016.45
  25. Cauwels A, Brouckaert P (2008) Critical role for small and large conductance calcium-dependent potassium channels in endotoxemia and TNF toxicity. Shock 29: 577–582. https://doi.org/10.1097/shk.0b013e31815071e9
  26. Garcia LF, Singh V, Mireles B, Dwivedi AK, Walker WE (2023) Common Variables That Influence Sepsis Mortality in Mice. J Inflamm Res 16: 1121–1134. https://doi.org/10.2147/JIR.S400115
  27. Dasoveanu DC, Shipman WD, Chia JJ, Chyou S, Lu TT (2016) Regulation of lymph node vascular-stromal compartment by dendritic cells. Trends Immunol 37: 764–777. https://doi.org/10.1016/j.it.2016.08.013
  28. Aldrich MB, Sevick-Muraca EM (2013) Cytokines are systemic effectors of lymphatic function in acute inflammation. Cytokine 64(1): 362–369. https://doi.org/10.1016/j.cyto.2013.05.015
  29. Косарева МЕ, Чивильдеев АВ, Лобов ГИ (2023) Сепсис-индуцированное ингибирование сократительной функции лимфатических узлов. Бюл экспер биол мед 176(9): 280–285. [Kosareva ME, Chivildeev AV, Lobov GI (2023) Sepsis-induced inhibition of contractile function of lymph nodes. Bull Exp Biol Med 176(9): 280–285. (In Russ)]. https://doi.org/10.47056/0365-9615-2023-176-9-280-285
  30. Shirasawa Y, Ikomi F, Ohhashi T (2000) Physiological roles of endogenous nitric oxide in lymphatic pump activity of rat mesentery in vivo. Am J Physiol Gastrointest Liver Physiol 278(4): G551–G556. https://doi.org/10.1152/ajpgi.2000.278.4.G551
  31. von der Weid PY, Zhao J, Van Helden DF (2001) Nitric oxide decreases pacemaker activity in lymphatic vessels of guinea pig mesentery. Am J Physiol Heart Circ Physiol 280(6): H2707–H2716. https://doi.org/10.1152/ajpheart.2001.280.6.H2707
  32. Лобов ГИ, Панькова МН (2010) NO-зависимая модуляция сократительной функции гладких мышц капсулы лимфатических узлов. Рос физиол журн им ИМ Сеченова 96(5): 489–497. [Lobov GI, Pan’kova MN (2010) NO-dependent modulation of the contractile function of smooth muscles of the lymph node capsule. Russ J Physiol 96(5): 489–497. (In Russ)].
  33. Fernandes D, Sordi R, Pacheco LK, Nardi GM, Heckert BT, Villela CG, Lobo AR, Barja-Fidalgo C, Assreuy J (2009) Late, but not early, inhibition of soluble guanylate cyclase decreases mortality in a rat sepsis model. J Pharmacol Exp Ther 328(3): 991–999. https://doi.org/10.1124/jpet.108.142034
  34. Adachi T, Weisbrod RM, Pimentel DR, Ying J, Sharov VS, Schöneich C, Cohen RA (2004) S-Glutathiolation by peroxynitrite activates SERCA during arterial relaxation by nitric oxide. Nat Med 10(11): 1200–1207. https://doi.org/10.1038/nm1119
  35. Zhao YJ, Wang J, Rubin LJ, Yuan XJ (1997) Inhibition of K(V) and K(Ca) channels antagonizes NO-induced relaxation in pulmonary artery. Am J Physiol 272(2 Pt 2): H904–H912. https://doi.org/10.1152/ajpheart.1997.272.2.H904
  36. Buckley JF, Singer M, Clapp LH (2006) Role of KATP channels in sepsis. Cardiovasc Res 72(2): 220–230. https://doi.org/10.1016/j.cardiores.2006.07.011
  37. Davis MJ, Kim HJ, Nichols CG (2022) KATP channels in lymphatic function. Am J Physiol Cell Physiol 323(4): C1018–C1035. https://doi.org/10.1152/ajpcell.00137.2022
  38. van de Pavert SA, Mebius RE (2014) Development of secondary lymphoid organs in relation to lymphatic vasculature. Adv Anat Embryol Cell Biol 214: 81–91. https://doi.org/10.1007/978-3-7091-1646-3_7
  39. von der Weid PY (1998) ATP-sensitive K+ channels in smooth muscle cells of guinea-pig mesenteric lymphatics: role in nitric oxide and beta-adrenoceptor agonist-induced hyperpolarizations. Br J Pharmacol 125(1): 17–22. https://doi.org/10.1038/sj.bjp.0702026
  40. Garner BR, Stolarz AJ, Stuckey D, Sarimollaoglu M, Liu Y, Palade PT, Rusch NJ, Mu S (2021) KATP Channel Openers Inhibit Lymphatic Contractions and Lymph Flow as a Possible Mechanism of Peripheral Edema. J Pharmacol Exp Ther 376(1): 40–50. https://doi.org/10.1124/jpet.120.000121
  41. Mathias R, von der Weid PY (2013) Involvement of the NO-cGMP-K(ATP) channel pathway in the mesenteric lymphatic pump dysfunction observed in the guinea pig model of TNBS-induced ileitis. Am J Physiol Gastrointest Liver Physiol 304(6): G623–G634. https://doi.org/10.1152/ajpgi.00392.2012
  42. Shi W, Cui N, Wu Z, Yang Y, Zhang S, Gai H, Zhu D, Jiang C (2009) Lipopolysaccharides up-regulate Kir6.1/SUR2B channel expression and enhance vascular KATP channel activity via NF-kappaB-dependent signaling. J Biol Chem 285: 3021–3029. https://doi.org/10.1074/jbc.M109.058313
  43. Ghatta S, Nimmagadda D, Xu X, O’Rourke ST (2006) Large-conductance, calcium-activated potassium channels: structural and functional implications. Pharmacol Ther 110(1): 103–116. https://doi.org/10.1016/j.pharmthera.2005.10.007
  44. Hu XQ, Zhang L (2012) Function and regulation of large conductance Ca2+-activated K+ channel in vascular smooth muscle cells. Drug Discov Today 17: 974–987. https://doi.org/10.1016/j.drudis.2012.04.002
  45. Wang Y, Zhang HT, Su XL, Deng XL, Yuan BX, Zhang W, Wang XF, Yang YB (2010) Experimental diabetes mellitus down-regulates large-conductance Ca2+-activated K+ channels in cerebral artery smooth muscle and alters functional conductance. Curr Neurovasc Res 7(2): 75–84. https://doi.org/10.2174/156720210791184925
  46. Pabbidi MR, Roman RJ (2017) Elevated K+ channel activity opposes vasoconstrictor response to serotonin in cerebral arteries of the fawn hooded hypertensive rat. Physiol Genom 49: 27–36. https://doi.org/10.1152/physiolgenomics.00072.2016
  47. Mistry DK, Garland CJ (1998) Nitric oxide (NO)-induced activation of large conductance Ca2+-dependent K+ channels (BK(Ca) in smooth muscle cells isolated from the rat mesenteric artery. Br J Pharmacol 124(6): 1131–1140. https://doi.org/10.1038/sj.bjp.0701940
  48. Kimmoun A, Ducrocq N, Levy B (2013) Mechanisms of vascular hyporesponsiveness in septic shock. Curr Vasc Pharmacol 11(2): 139–149.
  49. Kim HJ, Li M, Nichols CG, Davis MJ (2021) Large-conductance calcium-activated K+ channels, rather than KATP channels, mediate the inhibitory effects of nitric oxide on mouse lymphatic pumping. Br J Pharmacol 178(20): 4119–4136. https://doi.org/10.1111/bph.15602
  50. Telinius N, Kim S, Pilegaard H, Pahle E, Nielsen J, Hjortdal V, Aalkjaer C, Boedtkjer DB (2014) The contribution of K+ channels to human thoracic duct contractility. Am J Physiol Heart Circ Physiol 307(1): H33–H43. https://doi.org/10.1152/ajpheart.00921.201
  51. Heginbotham L, MacKinnon R (1992) The aromatic binding site for tetraethylammonium ion on potassium channels. Neuron 8: 483–491. https://doi.org/10.1016/0896-6273(92)90276-j
  52. Ruiz Rubio JL, Hernández M, Rivera de los Arcos L, Benedito S, Recio P, García P, García-Sacristán A, Prieto D (2004) At a concentration selective for calcium-activated K(KCa) channels (3 mM), tetraethylammonium inhibited rolipram responses but not those of PGE1. Role of ATP-sensitive K+ channels in relaxation of penile resistance arteries. Urology 63(4): 800–805. https://doi.org/10.1016/j.urology.2003.10.071
  53. Armstead WM, Hecker JG (2005) Heat shock protein modulation of KATP and KCa channel cerebrovasodilation after brain injury. Am J Physiol Heart Circ Physiol 289(3): H1184–H1190. https://doi.org/10.1152/ajpheart.00276.2005
  54. Bolotina VM, Najibi S, Palacino JJ, Pagano PJ, Cohen RA (1994) Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle cells. Nature 368: 850–853. https://doi.org/10.1038/368850a0

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (65KB)
3.

Жүктеу (69KB)
4.

Жүктеу (135KB)

© Г.И. Лобов, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>