The Role of Reactive Oxygen Species in the Regulation of Blood Vessel Tone in Perinatal and Early Postnatal Ontogenesis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Reactive oxygen species (ROS) have been considered for many years as negative regulators in the cardiovascular system. Indeed, excessive production of ROS characterizes many cardiovascular diseases. The damaging effect of ROS can be especially pronounced in a newborn organism, since during this period their contractile effect in pulmonary arteries remains as high as in the pre-term fetus arteries and the antioxidant systems have not yet formed. Therefore, in the first hours and days of independent life, pulmonary arteries tend to contract, primarily due to the low bioavailability of endothelial NO, which increases the risk of developing pulmonary hypertension in newborns. At the same time, during the perinatal period, ROS play an important role in the adaptive reactions of the circulatory system. ROS provide occlusion of the ductus arteriosus and separation of the pulmonary and systemic circulations soon after birth, and also contribute to the contraction of peripheral vessels during hypoxia, which often accompanies the delivery, and therefore provide priority blood supply to the brain in these conditions. The vasomotor effect of ROS is also pronounced in early postnatal ontogenesis, but it has a different character. In the first weeks of life, the action of ROS serves as one of the mechanisms for increasing endothelium-dependent relaxation of pulmonary vessels. In addition, during early postnatal ontogeny, ROS may play an important role in the regulation of systemic vascular tone. This review outlines the current understanding of the vasomotor role of ROS in the vessels of the pulmonary and systemic circulation and considers the mechanisms of ROS effects on the functioning of vascular endothelial and smooth muscle cells in the perinatal and early postnatal periods.

About the authors

A. A. Shvetsova

Department of Biology, Moscow State University

Author for correspondence.
Email: anastasiashvetsova92@gmail.com
Russia, Moscow

D. K. Gaynullina

Department of Biology, Moscow State University

Email: anastasiashvetsova92@gmail.com
Russia, Moscow

O. S. Tarasova

Department of Biology, Moscow State University; Institute of Medical and Biological Problems RAS

Email: anastasiashvetsova92@gmail.com
Russia, Moscow; Russia, Moscow

References

  1. Brown DI, Griendling KK (2015) Regulation of signal transduction by reactive oxygen species in the cardiovascular system. Circ Res 116: 531–549. https://doi.org/10.1161/CIRCRESAHA.116.303584
  2. Knock GA (2019) NADPH oxidase in the vasculature: Expression, regulation and signalling pathways; role in normal cardiovascular physiology and its dysregulation in hypertension. Free Radic Biol Med 145: 385–427. https://doi.org/10.1016/j.freeradbiomed.2019.09.029
  3. Tejero J, Shiva S, Gladwin MT (2019) Sources of vascular nitric oxide and reactive oxygen species and their regulation. Physiol Rev 99: 311–379. https://doi.org/10.1152/physrev.00036.2017
  4. Incalza MA, D’Oria R, Natalicchio A, Perrini S, Laviola L, Giorgino F (2018) Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vascul Pharmacol 100: 1–19. https://doi.org/10.1016/j.vph.2017.05.005
  5. Zhang Y, Murugesan P, Huang K, Cai H (2020) NADPH oxidases and oxidase crosstalk in cardiovascular diseases: novel therapeutic targets. Nat Rev Cardiol 17: 170–194. https://doi.org/10.1038/s41569-019-0260-8
  6. Borzykh AA, Shvetsova AA, Kuzmin IV, Buravkov SV, Gaynullina DK, Tarasova OS (2021) The Role of Reactive Oxygen Species in the Tone Regulation of Respiratory and Locomotor Muscle Arteries of the Rat. Moscow Univ Biol Sci Bull 76: 111–117. https://doi.org/10.3103/S0096392521030020
  7. Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology. Physiol Rev 87: 245–313. https://doi.org/10.1152/physrev.00044.2005
  8. Mittal M, Urao N, Hecquet CM, Zhang M, Sudhahar V, Gao XP, Komarova Y, Ushio-Fukai M, Malik AB (2015) Novel role of reactive oxygen species-activated trp melastatin channel-2 in mediating angiogenesis and postischemic neovascularization. Arterioscler Thromb Vasc Biol 35: 877–887. https://doi.org/10.1161/ATVBAHA.114.304802
  9. Chen C, Li L, Zhou HJ, Min W (2017) The role of NOX4 and TRX2 in angiogenesis and their potential cross-talk. Antioxidants 6(2): 42. https://doi.org/10.3390/antiox6020042
  10. Clempus RE, Sorescu D, Dikalova AE, Pounkova L, Jo P, Sorescu GP, Lassègue B, Griendling KK (2007) Nox4 is required for maintenance of the differentiated vascular smooth muscle cell phenotype. Arterioscler Thromb Vasc Biol 27: 42–48. https://doi.org/10.1161/01.ATV.0000251500.94478.18
  11. Xiao Q, Luo Z, Pepe AE, Margariti A, Zeng L, Xu Q (2009) Embryonic stem cell differentiation into smooth muscle cells is mediated by Nox4-produced H2O2. Am J Physiol – Cell Physiol 296(4): C711–C723. https://doi.org/10.1152/ajpcell.00442.2008
  12. Shvetsova AA, Gaynullina DK, Tarasova OS, Schubert R (2021) Remodeling of Arterial Tone Regulation in Postnatal Development: Focus on Smooth Muscle Cell Potassium Channels. Int J Mol Sci 22: 5413. https://doi.org/10.3390/ijms22115413
  13. Gaynullina DK, Schubert R, Tarasova OS (2019) Changes in endothelial nitric oxide production in systemic vessels during early ontogenesis—A key mechanism for the perinatal adaptation of the circulatory system. Int J Mol Sci 20: 1–12. https://doi.org/10.3390/ijms20061421
  14. Evans AM, Osipenko ON, Haworth SG, Gurney AM (1998) Resting potentials and potassium currents during development of pulmonary artery smooth muscle cells. Am J Physiol 275: H887–H899.
  15. Morecroft I, MacLean MR (1998) Developmental changes in endothelium-dependent vasodilation and the influence of superoxide anions in perinatal rabbit pulmonary arteries. Br J Pharmacol 125: 1585–1593. https://doi.org/10.1038/sj.bjp.0702217
  16. Kolber KA, Gao Y, Raj JU (2000) Maturational changes in endothelium-derived nitric oxide-mediated relaxation of ovine pulmonary arteries. Biol Neonate 77: 123–130. https://doi.org/10.1159/000014206
  17. Belik J, Kerc E, Pato MD (2006) Rat pulmonary arterial smooth muscle myosin light chain kinase and phosphatase activities decrease with age. Am J Physiol – Lung Cell Mol Physiol 290: 509–516. https://doi.org/10.1152/ajplung.00145.2005
  18. Mochalov SV, Tarasova NV, Kudryashova TV, Gaynullina DK, Kalenchuk VU, Borovik AS, Vorotnikov AV, Tarasova OS, Schubert R (2018) Higher Ca2+-sensitivity of arterial contraction in 1-week-old rats is due to a greater Rho-kinase activity. Acta Physiol 12: e13044. https://doi.org/10.1111/apha.13044
  19. Puzdrova VA, Kudryashova TV, Gaynullina DK, Mochalov SV, Aalkjaer C, Nilsson H, Vorotnikov AV, Schubert R, Tarasova OS (2014) Trophic action of sympathetic nerves reduces arterial smooth muscle Ca2+ sensitivity during early post-natal development in rats. Acta Physiol 212: 128–141. https://doi.org/10.1111/apha.12331
  20. Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417: 1–13. https://doi.org/10.1042/BJ20081386
  21. Han D, Antunes F, Canali R, Rettori D, Cadenas E (2003) Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol. J Biol Chem 278: 5557–5563. https://doi.org/10.1074/jbc.M210269200
  22. Veit F, Pak O, Egemnazarov B, Roth M, Kosanovic D, Seimetz M, Sommer N, Ghofrani HA, Seeger W, Grimminger F, Brandes RP, Schermuly RT, Weissmann N (2013) Function of NADPH oxidase 1 in pulmonary arterial smooth muscle cells after monocrotaline-induced pulmonary vascular remodeling. Antioxid Redox Signal 19: 2213–2231. https://doi.org/10.1089/ars.2012.4904
  23. Hawkins BJ, Madesh M, Kirkpatrick CJ, Fisher AB (2007) Superoxide Flux in Endothelial Cells via the Chloride Channel-3 Mediates Intracellular Signaling. Mol Biol Cell 18: 2002–2012. https://doi.org/10.1091/mbc.e06-09-0830
  24. Bienert GP, Møller ALB, Kristiansen KA, Schulz A, Møller IM, Schjoerring JK, Jahn TP (2007) Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem 282: 1183–1192. https://doi.org/10.1074/jbc.M603761200
  25. Al Ghouleh I, Frazziano G, Rodriguez AI, Csányi G, Maniar S, St Croix CM, Kelley EE, Egaña LA, Song GJ, Bisello A, Lee YJ, Pagano PJ (2013) Aquaporin 1, Nox1, and Ask1 mediate oxidant-induced smooth muscle cell hypertrophy. Cardiovasc Res 97: 134–142. https://doi.org/10.1093/cvr/cvs295
  26. Chen F, Pandey D, Chadli A, Catravas JD, Chen T, Fulton DJR (2011) Hsp90 regulates NADPH oxidase activity and is necessary for superoxide but not hydrogen peroxide production. Antioxid Redox Signal 14: 2107–2119. https://doi.org/10.1089/ars.2010.3669
  27. Fukai T, Ushio-Fukai M (2011) Superoxide dismutases: Role in redox signaling, vascular function, and diseases. Antioxid Redox Signal 15: 1583–1606. https://doi.org/10.1089/ars.2011.3999
  28. Snetkov VA, Smirnov SV, Kua J, Aaronson PI, Ward JPT, Knock GA (2011) Superoxide differentially controls pulmonary and systemic vascular tone through multiple signalling pathways. Cardiovasc Res 89: 214–224. https://doi.org/10.1093/cvr/cvq275
  29. Kendrick DJ, Mishra RC, John CM, Zhu HL, Braun AP (2022) Effects of Pharmacological Inhibitors of NADPH Oxidase on Myogenic Contractility and Evoked Vasoactive Responses in Rat Resistance Arteries. Front Physiol 12: 1–17. https://doi.org/10.3389/fphys.2021.752366
  30. Jin L, Ying Z, Webb RC (2004) Activation of Rho/Rho kinase signaling pathway by reactive oxygen species in rat aorta. Am J Physiol – Hear Circ Physiol 287: 1495–1500. https://doi.org/10.1152/ajpheart.01006.2003
  31. Li L, Lai EY, Wellstein A, Welch WJ, Wilcox CS (2016) Differential effects of superoxide and hydrogen peroxide on myogenic signaling, membrane potential, and contractions of mouse renal afferent arterioles. Am J Physiol – Renal Physiol 310: F1197–F1205. https://doi.org/10.1152/ajprenal.00575.2015
  32. Ding Y, Winters A, Ding M, Graham S, Akopova I, Muallem S, Wang Y, Hong JH, Gryczynski Z, Yang SH, Birnbaumer L, Ma R (2011) Reactive oxygen species-mediated TRPC6 protein activation in vascular myocytes, a mechanism for vasoconstrictor-regulated vascular tone. J Biol Chem 286: 31799–31809. https://doi.org/10.1074/jbc.M111.248344
  33. Leung HS, Leung FP, Yao X, Ko WH, Chen ZY, Vanhoutte PM, Huang Y (2006) Endothelial mediators of the acetylcholine-induced relaxation of the rat femoral artery. Vascul Pharmacol 44: 299–308.https://doi.org/10.1016/j.vph.2006.01.010
  34. Gao YJ, Hirota S, Zhang DW, Janssen LJ, Lee RMKW (2003) Mechanisms of hydrogen-peroxide-induced biphasic response in rat mesenteric artery. Br J Pharmacol 138: 1085–1092. https://doi.org/10.1038/sj.bjp.0705147
  35. Santiago E, Contreras C, García-Sacristán A, Sánchez A, Rivera L, Climent B, Prieto D (2013) Signaling pathways involved in the H2O2-induced vasoconstriction of rat coronary arteries. Free Radic Biol Med 60: 136–146. https://doi.org/10.1016/j.freeradbiomed.2013.02.014
  36. Sotníková R (1998) Investigation of the mechanisms underlying H2O2-evoked contraction in the isolated rat aorta. Gen Pharmacol 31: 115–119. https://doi.org/10.1016/S0306-3623(97)00392-3
  37. Vogel PA, Yang X, Moss NG, Arendshorst WJ (2015) Superoxide Enhances Ca2+ Entry Through L-Type Channels in the Renal Afferent Arteriole. Hypertension 66: 374–381. https://doi.org/10.1161/HYPERTENSIONAHA.115.05274
  38. Hu Q, Zheng G, Zweier JL, Deshpande S, Irani K, Ziegelstein RC (2000) NADPH oxidase activation increases the sensitivity of intracellular Ca2+ stores to inositol 1,4,5-trisphosphate in human endothelial cells. J Biol Chem 275: 15749–15757. https://doi.org/10.1074/jbc.M000381200
  39. Michelakis ED, Rebeyka I, Wu XC, Nsair A, Thébaud B, Hashimoto K, Dyck JRB, Haromy A, Harry G, Barr A, Archer SL (2002) O2 sensing in the human ductus arteriosus: Regulation of voltage-gated K+ channels in smooth muscle cells by a mitochondrial redox sensor. Circ Res 91: 478–486. https://doi.org/10.1161/01.RES.0000035057.63303.D1
  40. Ushio-Fukai M, Alexander RW, Akers M, Griendling KK (1998) p38 mitogen-activated protein kinase is a critical component of the redox-sensitive signaling pathways activated by angiotensin II. Role in vascular smooth muscle cell hypertrophy. J Biol Chem 273: 15022–15029. https://doi.org/10.1074/jbc.273.24.15022
  41. Touyz RM, Deschepper C, Park JB, He G, Chen X, Neves MFT, Virdis A, Schiffrin EL (2002) Inhibition of mitogen-activated protein/extracellular signal-regulated kinase improves endothelial function and attenuates Ang II-induced contractility of mesenteric resistance arteries from spontaneously hypertensive rats. J Hypertens 20: 1127–1134. https://doi.org/10.1097/00004872-200206000-00024
  42. Knock GA, Snetkov VA, Shaifta Y, Connolly M, Drndarski S, Noah A, Pourmahram GE, Becker S, Aaronson PI, Ward JPT (2009) Superoxide constricts rat pulmonary arteries via Rho-kinase-mediated Ca2+ sensitization. Free Radic Biol Med 46: 633–642. https://doi.org/10.1016/j.freeradbiomed.2008.11.015
  43. Mackay CE, Knock GA (2015) Control of vascular smooth muscle function by Src-family kinases and reactive oxygen species in health and disease. J Physiol 593: 3815–3828. https://doi.org/10.1113/jphysiol.2014.285304
  44. Burgoyne JR, Prysyazhna O, Rudyk O, Eaton P (2012) CGMP-dependent activation of protein kinase g precludes disulfide activation: Implications for blood pressure control. Hypertension 60: 1301–1308. https://doi.org/10.1161/HYPERTENSIONAHA.112.198754
  45. Zhang DX, Borbouse L, Gebremedhin D, Mendoza SA, Zinkevich NS, Li R, Gutterman DD (2012) H2O2-induced dilation in human coronary arterioles: Role of protein kinase G dimerization and large-conductance Ca2+-activated K+ channel activation. Circ Res 110: 471–480. https://doi.org/10.1161/CIRCRESAHA.111.258871
  46. Гайнуллина ДК, Кирюхина ОО, Тарасова ОС (2013) Оксид азота в эндотелии сосудов: регуляция продукции и механизмы действия. Успехи физиол наук 44: 88–102. [Gainullina DK, Kiryukhina OO, Tarasova OS (2013) Nitric oxide in the vascular endothelium: regulation of production and mechanisms of action. Uspekhi fiziol nauk 44: 88–102. (In Russ)].
  47. McMurphy DM, Heymann MA, Rudolph AM, Melmon KL (1972) Developmental changes in constriction of the ductus arteriosus: Responses to oxygen and vasoactive agents in the isolated ductus arteriosus of the fetal lamb. Pediatr Res 6: 231–238. https://doi.org/10.1203/00006450-197204000-00004
  48. Olschewski A, Hong Z, Peterson DA, Nelson DP, Porter VA, Weir EK (2004) Opposite effects of redox status on membrane potential, cytosolic calcium, and tone in pulmonary arteries and ductus arteriosus. Am J Physiol – Lung Cell Mol Physiol 286: 15–22. https://doi.org/10.1152/ajplung.00372.2002
  49. Cogolludo AL, Moral-Sanz J, Van Der Sterren S, Frazziano G, Van Cleef ANH, Menéndez C, Zoer B, Moreno E, Roman A, Pérez-Vizcaino F, Villamor E (2009) Maturation of O2 sensing and signaling in the chicken ductus arteriosus. Am J Physiol - Lung Cell Mol Physiol 297: 619–630. https://doi.org/10.1152/ajplung.00092.2009
  50. Villamor E, Moreno L, Mohammed R, Pérez-Vizcaíno F, Cogolludo A (2019) Reactive oxygen species as mediators of oxygen signaling during fetal-to-neonatal circulatory transition. Free Radic Biol Med 142: 82–96. https://doi.org/10.1016/j.freeradbiomed.2019.04.008
  51. Reeve HL, Tolarova S, Nelson DP, Archer S, Kenneth Weir E (2001) Redox control of oxygen sensing in the rabbit ductus arteriosus. J Physiol 533: 253–261. https://doi.org/10.1111/j.1469-7793.2001.0253b.x
  52. Tarasova OS, Gaynullina DK (2017) Rho-kinase as a key participant in the regulation of vascular tone in normal circulation and vascular disorders. Arter Hypertens 23: 383–394. https://doi.org/10.18705/1607-419X-2017-23-5-383-394
  53. Kajimoto H, Hashimoto K, Bonnet SN, Haromy A, Harry G, Moudgil R, Nakanishi T, Rebeyka I, Thébaud B, Michelakis ED, Archer SL (2007) Oxygen activates the rho/rho-kinase pathway and induces RhoB and ROCK-1 expression in human and rabbit ductus arteriosus by increasing mitochondria-derived reactive oxygen species: A newly recognized mechanism for sustaining ductal constriction. Circulation 115: 1777–1788. https://doi.org/10.1161/CIRCULATIONAHA.106.649566
  54. Dzialowski EM (2018) Comparative physiology of the ductus arteriosus among vertebrates. Semin Perinatol 42: 203–211. https://doi.org/10.1053/j.semperi.2018.05.002
  55. Bergwerff M, DeRuiter MC, Gittenberger-De Groot AC (1999) Comparative anatomy and ontogeny of the ductus arteriosus, a vascular outsider. Anat Embryol (Berl) 200: 559–571. https://doi.org/10.1007/s004290050304
  56. Dumitru CA, Zhang Y, Li X, Gulbins E (2007) Ceramide: A novel player in reactive oxygen species-induced signaling? Antioxid Redox Signal 9: 1535–1540. https://doi.org/10.1089/ars.2007.1692
  57. Moreno L, Moral-Sanz J, Morales-Cano D, Barreira B, Moreno E, Ferrarini A, Pandolfi R, Ruperez FJ, Cortijo J, Sanchez-Luna M, Villamor E, Perez-Vizcaino F, Cogolludo A (2014) Ceramide mediates acute oxygen aensing in vascular tissues. Antioxid Redox Signal 20: 1–14. https://doi.org/10.1089/ars.2012.4752
  58. Frazziano G, Moreno L, Moral-Sanz J, Menendez C, Escolano L, Gonzalez C, Villamor E, Alvarez-Sala JL, Cogolludo AL, Perez-Vizcaino F (2011) Neutral sphingomyelinase, NADPH oxidase and reactive oxygen species. Role in acute hypoxic pulmonary vasoconstriction. J Cell Physiol 226: 2633–2640. https://doi.org/10.1002/jcp.22611
  59. Clyman RI, Waleh N, Kajino H, Roman C, Mauray F (2007) Calcium-dependent and calcium-sensitizing pathways in the mature and immature ductus arteriosus. Am J Physiol – Regul Integr Comp Physiol 293: 1650–1656. https://doi.org/10.1152/ajpregu.00300.2007
  60. Thébaud B, Wu XC, Kajimoto H, Bonnet S, Hashimoto K, Michelakis ED, Archer SL (2008) Developmental absence of the O2 sensitivity of L-type calcium channels in preterm ductus arteriosus smooth muscle cells impairs O2 constriction contributing to patent ductus arteriosus. Pediatr Res 63: 176–181. https://doi.org/10.1203/PDR.0b013e31815ed059
  61. Waleh N, Reese J, Kajino H, Roman C, Seidner S, McCurnin D, Clyman RI (2009) Oxygen-induced tension in the sheep ductus arteriosus: Effects of gestation on potassium and calcium channel regulation. Pediatr Res 65: 285–290. https://doi.org/10.1203/PDR.0b013e31819746a1
  62. Frank L, Groseclose EE (1984) Preparation for birth into an O2-rich environment: The antioxidant enzymes in the developing rabbit lung. Pediatr Res 18: 240–244. https://doi.org/10.1203/00006450-198403000-00004
  63. Friel JK, Friesen RW, Harding SV, Roberts LJ (2004) Evidence of oxidative stress in full-term healthy infants. Pediatr Res 56: 878–882. https://doi.org/10.1203/01.PDR.0000146032.98120.43
  64. Perez M, Robbins ME, Revhaug C, Saugstad OD (2019) Oxygen radical disease in the newborn, revisited: Oxidative stress and disease in the newborn period. Free Radic Biol Med 142: 61–72. https://doi.org/10.1016/j.freeradbiomed.2019.03.035
  65. Shaito A, Aramouni K, Assaf R, Parenti A, Orekhov A, Yazbi A El, Pintus G, Eid AH (2022) Oxidative Stress-Induced Endothelial Dysfunction in Cardiovascular Diseases. Front Biosci – Landmark 27(3): 105. https://doi.org/10.31083/j.fbl2703105
  66. Wedgwood S, Steinhorn RH (2014) Role of reactive oxygen species in neonatal pulmonary vascular disease. Antioxid Redox Signal 21: 1926–1942. https://doi.org/10.1089/ars.2013.5785
  67. Villamor E, Kessels CGA, Fischer MAJ, Bast A, De Mey JGR, Blanco CE (2003) Role of superoxide anion on basal and stimulated nitric oxide activity in neonatal piglet pulmonary vessels. Pediatr Res 54: 372–381. https://doi.org/10.1203/01.PDR.0000077481.15081.C8
  68. Belik J, Jankov RP, Pan J, Tanswell AK (2004) Peroxynitrite inhibits relaxation and induces pulmonary artery muscle contraction in the newborn rat. Free Radic Biol Med 37: 1384–1392. https://doi.org/10.1016/j.freeradbiomed.2004.07.029
  69. Nozik-Grayck EVA, Dieterle CS, Piantadosi CA, Enghild JJ, Oury TD (2000) Secretion of extracellular superoxide dismutase in neonatal lungs. Am J Physiol – Lung Cell Mol Physiol 279: 977–984. https://doi.org/10.1152/ajplung.2000.279.5.l977
  70. Asikainen TM, Raivio KO, Saksela M, Kinnula VL (1998) Expression and developmental profile of antioxidant enzymes in human lung and liver. Am J Respir Cell Mol Biol 19: 942–949. https://doi.org/10.1165/ajrcmb.19.6.3248
  71. Berkelhamer SK, Kim GA, Radder JE, Wedgwood S, Czech L, Steinhorn RH, Schumacker PT (2013) Developmental differences in hyperoxia-induced oxidative stress and cellular responses in the murine lung. Free Radic Biol Med 61: 51–60. https://doi.org/10.1016/j.freeradbiomed.2013.03.003
  72. Dennis KE, Aschner JL, Milatovic D, Schmidt JW, Aschner M, Kaplowitz MR, Zhang Y, Fike CD (2009) NADPH oxidases and reactive oxygen species at different stages of chronic hypoxia-induced pulmonary hypertension in newborn piglets. Am J Physiol – Lung Cell Mol Physiol 297: 596–607. https://doi.org/10.1152/ajplung.90568.2008
  73. Fike CD, Slaughter JC, Kaplowitz MR, Zhang Y, Aschner JL (2008) Reactive oxygen species from NADPH oxidase contribute to altered pulmonary vascular responses in piglets with chronic hypoxia-induced pulmonary hypertension. Am J Physiol – Lung Cell Mol Physiol 295: 881–888. https://doi.org/10.1152/ajplung.00047.2008
  74. Savla SR, Laddha AP, Kulkarni YA (2021) Pharmacology of apocynin: a natural acetophenone. Drug Metab Rev 53: 542–562. https://doi.org/10.1080/03602532.2021.1895203
  75. Heumüller S, Wind S, Barbosa-Sicard E, Schmidt HHHW, Busse R, Schröder K, Brandes RP (2008) Apocynin is not an inhibitor of vascular NADPH oxidases but an antioxidant. Hypertension 51: 211–217. https://doi.org/10.1161/HYPERTENSIONAHA.107.100214
  76. Fike CD, Dikalova A, Slaughter JC, Kaplowitz MR, Zhang Y, Aschner JL (2013) Reactive oxygen species-reducing strategies improve pulmonary arterial responses to nitric oxide in piglets with chronic hypoxia-induced pulmonary hypertension. Antioxid Redox Signal 18: 1727–1738. https://doi.org/10.1089/ars.2012.4823
  77. Mata-Greenwood E, Jenkins C, Farrow KN, Konduri GG, Russell JA, Lakshminrusimha S, Black SM, Steinhorn RH (2006) eNOS function is developmentally regulated: Uncoupling of eNOS occurs postnatally. Am J Physiol – Lung Cell Mol Physiol 290: 232–241. https://doi.org/10.1152/ajplung.00393.2004
  78. Fike CD, Aschner JL, Zhang Y, Kaplowitz MR (2004) Impaired NO signaling in small pulmonary arteries of chronically hypoxic newborn piglets. Am J Physiol – Lung Cell Mol Physiol 286: 1244–1254. https://doi.org/10.1152/ajplung.00345.2003
  79. Rao GN, Runge MS, Alexander RW (1995) Hydrogen peroxide activation of cytosolic phospholipase A2 in vascular smooth muscle cells. Biochim Biophys Acta – Mol Cell Res 1265: 67–72. https://doi.org/10.1016/0167-4889(95)91997-Z
  80. Fike CD, Aschner JL, Slaughter JC, Kaplowitz MR, Zhang Y, Pfister SL (2011) Pulmonary arterial responses to reactive oxygen species are altered in newborn piglets with chronic hypoxia-induced pulmonary hypertension. Pediatr Res 70: 136–141. https://doi.org/10.1203/PDR.0b013e3182207ce7
  81. Pérez-Vizcaíno F, López-López JG, Santiago R, Cogolludo A, Zaragozá-Arnáez F, Moreno L, Alonso MJ, Salaices M, Tamargo J (2002) Postnatal maturation in nitric oxide-induced pulmonary artery relaxation involving cyclooxygenase-1 activity. Am J Physiol – Lung Cell Mol Physiol 283: 839–848. https://doi.org/10.1152/ajplung.00293.2001
  82. Smith WL, DeWitt DL, Garavito RM (2000) Cyclooxygenases: Structural, Cellular, and Molecular Biology. Annu Rev Biochem 69: 145–182. https://doi.org/10.1146/annurev.biochem.69.1.145
  83. Hernanz R, Briones AM, Salaices M, Alonso MJ (2014) New roles for old pathways? A circuitous relationship between reactive oxygen species and cyclo-oxygenase in hypertension. Clin Sci 126: 111–121.https://doi.org/10.1042/CS20120651
  84. López-Lópe JG, Pérez-Vizcaino F, Cogolludo AL, Ibarra M, Zaragozá-Arnáez F, Tamargo J (2001) Nitric oxide- and nitric oxide donors-induced relaxation and its modulation by oxidative stress in piglet pulmonary arteries. Br J Pharmacol 133: 615–624. https://doi.org/10.1038/sj.bjp.0704103
  85. Brennan LA, Steinhorn RH, Wedgwood S, Mata-Greenwood E, Roark EA, Russell JA, Black SM (2003) Increased superoxide generation is associated with pulmonary hypertension in fetal lambs: A role for NADPH oxidase. Circ Res 92: 683–691. https://doi.org/10.1161/01.RES.0000063424.28903.BB
  86. Wedgwood S, Steinhorn RH, Bunderson M, William J, Lakshminrusimha S, Brennan LA, Black SM (2005) Increased hydrogen peroxide downregulates soluble guanylate cyclase in the lungs of lambs with persistent pulmonary hypertension of the newborn. Am J Physiol – Lung Cell Mol Physiol 289: 660–666. https://doi.org/10.1152/ajplung.00369.2004
  87. Guo J, Yu X, Liu Y, Lu L, Zhu D, Zhang Y, Li L, Zhang P, Gao Q, Lu X, Sun M (2022) Prenatal hypothyroidism diminished exogenous NO-mediated diastolic effects in fetal rat thoracic aorta smooth muscle via increased oxidative stress. Reprod Toxicol 113: 52–61. https://doi.org/10.1016/j.reprotox.2022.08.009
  88. Giussani DA (2016) The fetal brain sparing response to hypoxia: Physiological mechanisms. J Physiol 594: 1215–1230. https://doi.org/10.1113/JP271099
  89. Sommer N, Strielkov I, Pak O, Weissmann N (2016) Oxygen sensing and signal transduction in hypoxic pulmonary vasoconstriction. Eur Respir J 47: 288–303. https://doi.org/10.1183/13993003.00945-2015
  90. Jackson WF (2016) Arteriolar oxygen reactivity: where is the sensor and what is the mechanism of action? J Physiol 594: 5055–5077. https://doi.org/10.1113/JP270192
  91. Thakor AS, Richter HG, Kane AD, Dunster C, Kelly FJ, Poston L, Giussani DA (2010) Redox modulation of the fetal cardiovascular defence to hypoxaemia. J Physiol 588: 4235–4247. https://doi.org/10.1113/jphysiol.2010.196402
  92. Kane AD, Hansell JA, Herrera EA, Allison BJ, Niu Y, Brain KL, Kaandorp JJ, Derks JB, Giussani DA (2014) Xanthine oxidase and the fetal cardiovascular defence to hypoxia in late gestation ovine pregnancy. J Physiol 592: 475–489. https://doi.org/10.1113/jphysiol.2013.264275
  93. Brinks L, Moonen RMJ, Moral-Sanz J, Barreira B, Kessels L, Perez-Vizcaino F, Cogolludo A, Villamor E (2016) Hypoxia-induced contraction of chicken embryo mesenteric arteries: Mechanisms and developmental changes. Am J Physiol - Regul Integr Comp Physiol 311: R858–R869. https://doi.org/10.1152/ajpregu.00461.2015
  94. Zoer B, Cogolludo AL, Perez-Vizcaino F, De Mey JGR, Blanco CE, Villamor E (2010) Hypoxia sensing in the fetal chicken femoral artery is mediated by the mitochondrial electron transport chain. Am J Physiol - Regul Integr Comp Physiol 298: 1026–1034. https://doi.org/10.1152/ajpregu.00500.2009
  95. Nankervis CA, Miller CE (1998) Developmental differences in response of mesenteric artery to acute hypoxia in vitro. Am J Physiol – Gastrointest Liver Physiol 274(4): G694–G699. https://doi.org/10.1152/ajpgi.1998.274.4.g694
  96. Charles SM, Zhang L, Cipolla MJ, Buchholz JN, Pearce WJ (2010) Roles of cytosolic Ca2+ concentration and myofilament Ca2+ sensitization in age-dependent cerebrovascular myogenic tone. Am J Physiol - Hear Circ Physiol 299: 1034–1044. https://doi.org/10.1152/ajpheart.00214.2010
  97. Štulcová B (1977) Postnatal Development of Cardiac Output Distribution Measured by Radioactive Microspheres in Rats. Neonatology 32: 119–124. https://doi.org/10.1159/000241004
  98. Jankov RP, Negus A, Keith TA (2001) Antioxidants as therapy in the newborn: Some words of caution. Pediatr Res 50: 681–687. https://doi.org/10.1203/00006450-200112000-00009
  99. Lee JW, Davis JM (2011) Future applications of antioxidants in premature infants. Curr Opin Pediatr 23: 161–166. https://doi.org/10.1097/MOP.0b013e3283423e51

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (445KB)
3.

Download (695KB)
4.

Download (59KB)

Copyright (c) 2023 А.А. Швецова, Д.К. Гайнуллина, О.С. Тарасова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies