Thrombin in the Crossroad Hemostasis and Inflammation

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Hemostasis and immune responses are evolutionarily and functionally related systems on the coordinated work of which vital processes – protection from blood loss and pathogens, depend. Thrombin is the central enzyme of the coagulation system, which has pronounced pro–inflammatory activity and plays an important role in the pathogenesis of a wide range of infectious and non-infectious diseases. Many humoral immune factors regulating inflammation (IL-1α, C3 and C5 complement components) and cell migration to the lesion site (osteopontin, chimerin) are thrombin targets and become activated by proteolytic cleavage. The main thrombin receptors – protease-activating receptors (PARs), are expressed on many cells of the immune system and are considered as non–classical pattern-recognizing receptors (PRRs). The effect of thrombin on innate immune cells may not be related to its enzymatic effects. Thrombin action on adaptive immunity is just beginning to be studied. Recent studies show that thrombin can act as an alarmin, stimulate the maturation of dendritic cells and adaptive immune responses. The production of this factor also affects Th cell polarization, which determines immune response strategy. The study of the immune functions of the components of the coagulation system reveals new pathogenetic mechanisms of the development of sterile inflammation and expands existing possibilities of allergic, autoimmune and neuroinflammatory disease therapy.

Авторлар туралы

E. Starikova

Institute of Experimental Medicine; Pavlov First St. Petersburg State Medical University; Institute of Medical Education, Almazov National Medical Research Centre

Хат алмасуға жауапты Автор.
Email: Starickova@yandex.ru
Russia, Saint-Petersburg; Russia, Saint-Petersburg; Russia, Saint-Petersburg

J. Mammedova

Institute of Experimental Medicine

Email: Starickova@yandex.ru
Russia, Saint-Petersburg

O. Porembskaya

Institute of Experimental Medicine; Mechnikov North-Western State Medical University

Email: Starickova@yandex.ru
Russia, Saint-Petersburg; Russia, Saint-Petersburg

Әдебиет тізімі

  1. Petzold T, Massberg S (2019) Thrombin: A Gas Pedal Driving Innate Immunity. Immunity 50: 1024–1026. https://doi.org/10.1016/j.immuni.2019.03.006
  2. Göbel K, Eichler S, Wiendl H, Chavakis T, Kleinschnitz C, Meuth SG (2018) The Coagulation Factors Fibrinogen, Thrombin, and Factor XII in Inflammatory Disorders-A Systematic Review. Front Immunol 9: 1731. https://doi.org/10.3389/fimmu.2018.01731
  3. Antoniak S (2018) The coagulation system in host defense. Res Pract Thromb Haemost 2: 549–557. https://doi.org/10.1002/rth2.12109
  4. Jenne CN (2018) Pathogen-induced coagulation: a new angle? Blood 132: 771–773. https://doi.org/10.1182/blood-2018-07-859967
  5. Krarup A, Wallis R, Presanis JS, Gál P, Sim RB (2007) Simultaneous activation of complement and coagulation by MBL-associated serine protease 2. PLoS One 2: e623. https://doi.org/10.1371/journal.pone.0000623
  6. Delvaeye M, Conway EM (2009) Coagulation and innate immune responses: can we view them separately? Blood 114: 2367–2374. https://doi.org/10.1182/blood-2009-05-199208
  7. Hajela K, Kojima M, Ambrus G, Wong KHN, Moffatt BE, Ferluga J, Hajela S, Gál P, Sim RB (2002) The biological functions of MBL-associated serine proteases (MASPs). Immunobiology 205: 467–475. https://doi.org/10.1078/0171-2985-00147
  8. Wiedmer T, Esmon CT, Sims PJ (1986) Complement proteins C5b-9 stimulate procoagulant activity through platelet prothrombinase. Blood 68: 875–880.
  9. Posma JJN, Posthuma JJ, Spronk HMH (2016) Coagulation and non-coagulation effects of thrombin. J Thromb Haemost 14: 1908–1916. https://doi.org/10.1111/jth.13441
  10. Qu Z, Chaikof EL (2010) Interface between hemostasis and adaptive immunity. Current Opinion Immunol 22: 634–642. https://doi.org/10.1016/j.coi.2010.08.017
  11. Bogatcheva NV, Garcia JGN, Verin AD (2002) Molecular mechanisms of thrombin-induced endothelial cell permeability. Biochemistry (Mosc) 67: 75–84. https://doi.org/10.1023/a:1013904231324
  12. Catar R, Moll G, Hosp I, Simon M, Luecht C, Zhao H, Wu D, Chen L, Kamhieh-Milz J, Korybalska K, Zickler D, Witowski J (2021) Transcriptional Regulation of Thrombin-Induced Endothelial VEGF Induction and Proangiogenic Response. Cells 10: 910. https://doi.org/10.3390/cells10040910
  13. Machida T, Takata F, Matsumoto J, Miyamura T, Hirata R, Kimura I, Kataoka Y, Dohgu S, Yamauchi A (2017) Contribution of thrombin-reactive brain pericytes to blood-brain barrier dysfunction in an in vivo mouse model of obesity-associated diabetes and an in vitro rat model. PLoS One 12: e0177447. https://doi.org/10.1371/journal.pone.0177447
  14. Yuliani FS, Chen J-Y, Cheng W-H, Wen H-C, Chen B-C, Lin C-H (2022) Thrombin induces IL-8/CXCL8 expression by DCLK1-dependent RhoA and YAP activation in human lung epithelial cells. J Biomed Sci 29: 95. https://doi.org/10.1186/s12929-022-00877-0
  15. Strande JL, Phillips SA (2009) Thrombin increases inflammatory cytokine and angiogenic growth factor secretion in human adipose cells in vitro. J Inflamm (Lond) 6: 4. https://doi.org/10.1186/1476-9255-6-4
  16. Ukan Ü, Delgado Lagos F, Kempf S, Günther S, Siragusa M, Fisslthaler B, Fleming I (2022) Effect of Thrombin on the Metabolism and Function of Murine Macrophages. Cells 11: 1718. https://doi.org/10.3390/cells11101718
  17. Fang X, Liao R, Yu Y, Li J, Guo Z, Zhu T (2019) Thrombin Induces Secretion of Multiple Cytokines and Expression of Protease-Activated Receptors in Mouse Mast Cell Line. Mediators Inflammat 2019: e4952131. https://doi.org/10.1155/2019/4952131
  18. Yanagita M, Kobayashi R, Kashiwagi Y, Shimabukuro Y, Murakami S (2007) Thrombin regulates the function of human blood dendritic cells. Biochem Biophys Res Commun 364: 318–324. https://doi.org/10.1016/j.bbrc.2007.10.002
  19. Kaplan ZS, Zarpellon A, Alwis I, Yuan Y, McFadyen J, Ghasemzadeh M, Schoenwaelder SM, Ruggeri ZM, Jackson SP (2015) Thrombin-dependent intravascular leukocyte trafficking regulated by fibrin and the platelet receptors GPIb and PAR4. Nat Commun 6: 7835. https://doi.org/10.1038/ncomms8835
  20. Suades R, Padró T, Vilahur G, Badimon L (2022) Platelet-released extracellular vesicles: the effects of thrombin activation. Cell Mol Life Sci 79: 190. https://doi.org/10.1007/s00018-022-04222-4
  21. Krisinger MJ, Goebeler V, Lu Z, Meixner SC, Myles T, Pryzdial ELG, Conway EM (2012) Thrombin generates previously unidentified C5 products that support the terminal complement activation pathway. Blood 120: 1717–1725. https://doi.org/10.1182/blood-2012-02-412080
  22. Marin V, Farnarier C, Grès S, Kaplanski S, Su MS, Dinarello CA, Kaplanski G (2001) The p38 mitogen-activated protein kinase pathway plays a critical role in thrombin-induced endothelial chemokine production and leukocyte recruitment. Blood 98: 667–673. https://doi.org/10.1182/blood.v98.3.667
  23. Bernhagen J, Krohn R, Lue H, Gregory JL, Zernecke A, Koenen RR, Dewor M, Georgiev I, Schober A, Leng L, Kooistra T, Fingerle-Rowson G, Ghezzi P, Kleemann R, McColl SR, Bucala R, Hickey MJ, Weber C (2007) MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment. Nat Med 13: 587–596. https://doi.org/10.1038/nm1567
  24. Bae J-S, Yang L, Manithody C, Rezaie AR (2007) The ligand occupancy of endothelial protein C receptor switches the protease-activated receptor 1-dependent signaling specificity of thrombin from a permeability-enhancing to a barrier-protective response in endothelial cells. Blood 110: 3909–3916. https://doi.org/10.1182/blood-2007-06-096651
  25. Bae J-S, Kim Y-U, Park M-K, Rezaie AR (2009) Concentration dependent dual effect of thrombin in endothelial cells via Par-1 and Pi3 Kinase. J Cell Physiol 219: 744–751. https://doi.org/10.1002/jcp.21718
  26. Ma L, Dorling A (2012) The roles of thrombin and protease-activated receptors in inflammation. Semin Immunopathol 34 :63–72. https://doi.org/10.1007/s00281-011-0281-9
  27. Grammas P, Samany PG, Thirumangalakudi L (2006) Thrombin and inflammatory proteins are elevated in Alzheimer’s disease microvessels: implications for disease pathogenesis. J Alzheimers Dis 9: 51–58. https://doi.org/10.3233/jad-2006-9105
  28. Yin X, Wright J, Wall T, Grammas P (2010) Brain endothelial cells synthesize neurotoxic thrombin in Alzheimer’s disease. Am J Pathol 176: 1600–1606. https://doi.org/10.2353/ajpath.2010.090406
  29. Murakami H, Okazaki M, Amagasa H, Oguchi K (2003) Increase in hepatic mRNA expression of coagulant factors in type 2 diabetic model mice. Thromb Res 111: 81–87. https://doi.org/10.1016/s0049-3848(03)00404-3
  30. Danckwardt S, Hentze MW, Kulozik AE (2013) Pathologies at the nexus of blood coagulation and inflammation: thrombin in hemostasis, cancer, and beyond. J Mol Med (Berl) 91: 1257–1271. https://doi.org/10.1007/s00109-013-1074-5
  31. Kim D-Y, Cho SH, Takabayashi T, Schleimer RP (2015) Chronic Rhinosinusitis and the Coagulation System. Allergy, Asthma & Immunol Res 7: 421–430. https://doi.org/10.4168/aair.2015.7.5.421
  32. Cugno M, Tedeschi A, Borghi A, Bucciarelli P, Asero R, Venegoni L, Griffini S, Grovetti E, Berti E, Marzano AV (2015) Activation of Blood Coagulation in Two Prototypic Autoimmune Skin Diseases: A Possible Link with Thrombotic Risk. PLoS One 10: e0129456. https://doi.org/10.1371/journal.pone.0129456
  33. Iannucci J, Grammas P (2023) Thrombin, a Key Driver of Pathological Inflammation in the Brain. Cells 12: 1222. https://doi.org/10.3390/cells12091222
  34. Iliadi V, Konstantinidou I, Aftzoglou K, Iliadis S, Konstantinidis TG, Tsigalou C (2021) The Emerging Role of Neutrophils in the Pathogenesis of Thrombosis in COVID-19. Int J Mol Sci 22: 5368. https://doi.org/10.3390/ijms22105368
  35. Лобастов КВ, Счастливцев ИВ, Порембская ОЯ, Дженина ОВ, Барганджия АБ, Цаплин СН (2021) COVID-19-ассоциированная коагулопатия: обзор современных рекомендаций по диагностике, лечению и профилактике. Амбулат хирургия (3-4): 36–51. [Lobastov KV, Schastlivtsev IV, Porembskaya OY, Dzenina OV, Bargandzhiya AB, Tsaplin SN (2020) COVID-19-associated coagulopathy: review of current recommendations for diagnosis, treatment and prevention. Ambulat Surgery (3-4): 36–51. (In Russ)]. https://doi.org/10.21518/1995-1477-2020-3-4-36-51]
  36. Порембская ОЯ, Кравчук ВН, Гальченко МИ, Деев РВ, Чесноков МШ, Аванесян АВ, Лобастов КВ, Цаплин СН, Лаберко ЛА, Ермаков ВС, Пашовкина ОВ, Счастливцев ИВ, Сайганов СА (2022) Тромбоз сосудистого русла легких при COVID-19: клинико-морфологические параллели. Рациональная фармакотер в кардиол 18: 376–384. [Porembskaya OY, Kravchuk VN, Galchenko MI, Deev RV, Chesnokov MS, Avanesyan AV, Lobastov KV, Tsaplin SN, Laberko LA, Ermakov VS, Pashovkina OV, Schastlivtsev IV, Sayganov SA (2022) Pulmonary Vascular Thrombosis in COVID-19: Clinical and Morphological Parallels. Rational Pharmacother in Cardiol 18: 376–384. (In Russ)]. https://doi.org/10.20996/1819-6446-2022-08-01
  37. Porembskaya O, Lobastov K, Pashovkina O, Tsaplin S, Schastlivtsev I, Zhuravlev S, Laberko L, Rodoman G, Kravchuk V, Skvortsov A, Saiganov S (2020) Thrombosis of pulmonary vasculature despite anticoagulation and thrombolysis: The findings from seven autopsies. Thrombosis Update 1:100017. https://doi.org/10.1016/j.tru.2020.100017
  38. Kudryavtsev I, Rubinstein A, Golovkin A, Kalinina O, Vasilyev K, Rudenko L, Isakova-Sivak I (2022) Dysregulated Immune Responses in SARS-CoV-2-Infected Patients: A Comprehensive Overview. Viruses 14: 1082. https://doi.org/10.3390/v14051082
  39. Grover SP, Mackman N (2019) Intrinsic Pathway of Coagulation and Thrombosis. Arterioscler Thromb Vasc Biol 39: 331–338. https://doi.org/10.1161/ATVBAHA.118.312130
  40. Pryzdial ELG, Leatherdale A, Conway EM (2022) Coagulation and complement: Key innate defense participants in a seamless web. Front Immunol 13: 918775. https://doi.org/10.3389/fimmu.2022.918775
  41. Maas C, Oschatz C, Renné T (2011) The Plasma Contact System 2.0. Semin Thromb Hemost 37: 375–381. https://doi.org/10.1055/s-0031-1276586
  42. Maas C, Renné T (2012) Regulatory mechanisms of the plasma contact system. Thromb Res 129: S73–S76. https://doi.org/10.1016/j.thromres.2012.02.039
  43. Яковлева ЕВ, Зозуля НИ (2022) Физиологическая и патологическая роль фактора свертывания крови XII. Гематол и трансфузиол 67: 570–578. [Yakovleva EV, Zozulya NI (2022) Physiological and pathological role of factor XII. Russ J Hematol Transfusiol 67(4): 570-578. (In Russ)]. https://doi.org/10.35754/0234-5730-2022-67-4-570-578
  44. Konrath S, Mailer RK, Beerens M, Englert H, Frye M, Kuta P, Preston RJS, Maas C, Butler LM, Roest M, de Laat B, Renné T (2022) Intrinsic coagulation pathway-mediated thrombin generation in mouse whole blood. Front Cardiovasc Med 9: 1008410. https://doi.org/10.3389/fcvm.2022.1008410
  45. Navarro S, Stegner D, Nieswandt B, Heemskerk JWM, Kuijpers MJE (2021) Temporal Roles of Platelet and Coagulation Pathways in Collagen- and Tissue Factor-Induced Thrombus Formation. Int J Mol Sci 23: 358. https://doi.org/10.3390/ijms23010358
  46. Manz XD, Bogaard HJ, Aman J (2022) Regulation of VWF (Von Willebrand Factor) in Inflammatory Thrombosis. Arteriosclerosis, Thrombosis, and Vascular Biol 42: 1307–1320. https://doi.org/10.1161/ATVBAHA.122.318179
  47. Ben Shimon M, Lenz M, Ikenberg B, Becker D, Shavit Stein E, Chapman J, Tanne D, Pick CG, Blatt I, Neufeld M, Vlachos A, Maggio N (2015) Thrombin regulation of synaptic transmission and plasticity: implications for health and disease. Front Cell Neurosci 9: 151. https://doi.org/10.3389/fncel.2015.00151
  48. Tsuchida T, Hayakawa M, Kawahara S, Kumano O (2022) Thrombin generation capacity is enhanced by low antithrombin activity and depends on the activity of the related coagulation factors. Thromb J 20: 29. https://doi.org/10.1186/s12959-022-00388-w
  49. Dihanich M, Kaser M, Reinhard E, Cunningham D, Monard D (1991) Prothrombin mRNA is expressed by cells of the nervous system. Neuron 6: 575–581. https://doi.org/10.1016/0896-6273(91)90060-d
  50. Riek-Burchardt M, Striggow F, Henrich-Noack P, Reiser G, Reymann KG (2002) Increase of prothrombin-mRNA after global cerebral ischemia in rats, with constant expression of protease nexin-1 and protease-activated receptors. Neurosci Lett 329: 181–184. https://doi.org/10.1016/s0304-3940(02)00645-6
  51. Citron BA, Smirnova IV, Arnold PM, Festoff BW (2000) Upregulation of neurotoxic serine proteases, prothrombin, and protease-activated receptor 1 early after spinal cord injury. J Neurotrauma 17: 1191–1203. https://doi.org/10.1089/neu.2000.17.1191
  52. Van Landingham JW, Cekic M, Cutler SM, Hoffman SW, Washington ER, Johnson SJ, Miller D, Stein DG (2008) Progesterone and its metabolite allopregnanolone differentially regulate hemostatic proteins after traumatic brain injury. J Cereb Blood Flow Metab 28: 1786–1794. https://doi.org/10.1038/jcbfm.2008.73
  53. Ceelie H, Bertina RM, van Hylckama Vlieg A, Rosendaal FR, Vos HL (2001) Polymorphisms in the prothrombin gene and their association with plasma prothrombin levels. Thromb Haemost 85: 1066–1070.
  54. Gehring NH, Frede U, Neu-Yilik G, Hundsdoerfer P, Vetter B, Hentze MW, Kulozik AE (2001) Increased efficiency of mRNA 3’ end formation: a new genetic mechanism contributing to hereditary thrombophilia. Nat Genet 28: 389–392. https://doi.org/10.1038/ng578
  55. Danckwardt S, Gehring N, Neu-Yilik G, Hundsdoerfer P, Pforsich M, Frede U, Hentze M, Kulozik A (2004) The prothrombin 3’ end formation signal reveals a unique architecture that is sensitive to thrombophilic gain-of-function mutations. Blood 104: 428–435. https://doi.org/10.1182/blood-2003-08-2894
  56. Danckwardt S, Hartmann K, Gehring NH, Hentze MW, Kulozik AE (2006) 3' end processing of the prothrombin mRNA in thrombophilia. Acta Haematol 115: 192–197. https://doi.org/10.1159/000090934
  57. Soria JM, Almasy L, Souto JC, Tirado I, Borell M, Mateo J, Slifer S, Stone W, Blangero J, Fontcuberta J (2000) Linkage analysis demonstrates that the prothrombin G20210A mutation jointly influences plasma prothrombin levels and risk of thrombosis. Blood 95: 2780–2785.
  58. Huber-Lang M, Sarma JV, Zetoune FS, Rittirsch D, Neff TA, McGuire SR, Lambris JD, Warner RL, Flierl MA, Hoesel LM, Gebhard F, Younger JG, Drouin SM, Wetsel RA, Ward PA (2006) Generation of C5a in the absence of C3: a new complement activation pathway. Nat Med 12: 682–687. https://doi.org/10.1038/nm1419
  59. Boven LA, Vergnolle N, Henry SD, Silva C, Imai Y, Holden J, Warren K, Hollenberg MD, Power C (2003) Up-regulation of proteinase-activated receptor 1 expression in astrocytes during HIV encephalitis. J Immunol 170: 2638–2646. https://doi.org/10.4049/jimmunol.170.5.2638
  60. Danckwardt S, Gantzert A-S, Macher-Goeppinger S, Probst HC, Gentzel M, Wilm M, Gröne H-J, Schirmacher P, Hentze MW, Kulozik AE (2011) p38 MAPK controls prothrombin expression by regulated RNA 3’ end processing. Mol Cell 41: 298–310. https://doi.org/10.1016/j.molcel.2010.12.032
  61. Levi M, van der Poll T, Büller HR (2004) Bidirectional relation between inflammation and coagulation. Circulation 109: 2698–2704. https://doi.org/10.1161/01.CIR.0000131660.51520.9A
  62. Esmon CT (2005) The interactions between inflammation and coagulation. Br J Haematol 131: 417–430. https://doi.org/10.1111/j.1365-2141.2005.05753.x
  63. Coughlin SR (2000) Thrombin signalling and protease-activated receptors. Nature 407: 258–264. https://doi.org/10.1038/35025229
  64. Ossovskaya VS, Bunnett NW (2004) Protease-Activated Receptors: Contribution to Physiology and Disease. Physiol Rev 84: 579–621. https://doi.org/10.1152/physrev.00028.2003
  65. Coughlin SR (2005) Protease-activated receptors in hemostasis, thrombosis and vascular biology. J Thrombosis and Haemostasis 3: 1800–1814. https://doi.org/10.1111/j.1538-7836.2005.01377.x
  66. Luo W, Wang Y, Reiser G (2007) Protease-activated receptors in the brain: Receptor expression, activation, and functions in neurodegeneration and neuroprotection. Brain Res Rev 56: 331–345. https://doi.org/10.1016/j.brainresrev.2007.08.002
  67. Macfarlane SR, Seatter MJ, Kanke T, Hunter GD, Plevin R (2001) Proteinase-Activated Receptors. Pharmacol Rev 53: 245–282.
  68. Traynelis SF, Trejo J (2007) Protease-activated receptor signaling: new roles and regulatory mechanisms. Current Opinion in Hematol 14: 230. https://doi.org/10.1097/MOH.0b013e3280dce568
  69. Syrovatkina V, Alegre KO, Dey R, Huang X-Y (2016) Regulation, Signaling, and Physiological Functions of G-Proteins. J Mol Biol 428: 3868. https://doi.org/10.1016/j.jmb.2016.08.002
  70. Camerer E, Huang W, Coughlin SR (2000) Tissue factor- and factor X-dependent activation of protease-activated receptor 2 by factor VIIa. Proc Natl Acad Sci U S A 97: 5255–5260. https://doi.org/10.1073/pnas.97.10.5255
  71. Little PJ, Burch ML, Al-aryahi S, Zheng W (2011) The paradigm of G protein receptor transactivation: a mechanistic definition and novel example. Scient World J 11: 709–714. https://doi.org/10.1100/tsw.2011.75
  72. Gieseler F, Ungefroren H, Settmacher U, Hollenberg MD, Kaufmann R (2013) Proteinase-activated receptors (PARs) – focus on receptor-receptor-interactions and their physiological and pathophysiological impact. Cell Communicat and Signal 11: 86. https://doi.org/10.1186/1478-811X-11-86
  73. Van den Biggelaar M, Hernández-Fernaud JR, van den Eshof BL, Neilson LJ, Meijer AB, Mertens K, Zanivan S (2014) Quantitative phosphoproteomics unveils temporal dynamics of thrombin signaling in human endothelial cells. Blood 123: e22–e36. https://doi.org/10.1182/blood-2013-12-546036
  74. Stefanini L, Boulaftali Y, Ouellette TD, Holinstat M, Désiré L, Leblond B, Andre P, Conley PB, Bergmeier W (2012) Rap1-Rac1 circuits potentiate platelet activation. Arterioscler Thromb Vasc Biol 32: 434–441. https://doi.org/10.1161/ATVBAHA.111.239194
  75. Klages B, Brandt U, Simon MI, Schultz G, Offermanns S (1999) Activation of G12/G13 results in shape change and Rho/Rho-kinase-mediated myosin light chain phosphorylation in mouse platelets. J Cell Biol 144: 745–754. https://doi.org/10.1083/jcb.144.4.745
  76. Zhao P, Metcalf M, Bunnett NW (2014) Biased signaling of protease-activated receptors. Front Endocrinol (Lausanne) 5: 67. https://doi.org/10.3389/fendo.2014.00067
  77. Offermanns S, Mancino V, Revel JP, Simon MI (1997) Vascular system defects and impaired cell chemokinesis as a result of Galpha13 deficiency. Science 275: 533–536. https://doi.org/10.1126/science.275.5299.533
  78. Donovan FM, Pike CJ, Cotman CW, Cunningham DD (1997) Thrombin induces apoptosis in cultured neurons and astrocytes via a pathway requiring tyrosine kinase and RhoA activities. J Neurosci 17: 5316–5326. https://doi.org/10.1523/JNEUROSCI.17-14-05316.1997
  79. Flock T, Ravarani CNJ, Sun D, Venkatakrishnan AJ, Kayikci M, Tate CG, Veprintsev DB, Babu MM (2015) Universal allosteric mechanism for Gα activation by GPCRs. Nature 524: 173–179. https://doi.org/10.1038/nature14663
  80. Alberelli MA, De Candia E (2014) Functional role of protease activated receptors in vascular biology. Vascul Pharmacol 62: 72–81. https://doi.org/10.1016/j.vph.2014.06.001
  81. Hung DT, Vu TH, Nelken NA, Coughlin SR (1992) Thrombin-induced events in non-platelet cells are mediated by the unique proteolytic mechanism established for the cloned platelet thrombin receptor. J Cell Biol 116: 827–832. https://doi.org/10.1083/jcb.116.3.827
  82. Feistritzer C, Riewald M (2005) Endothelial barrier protection by activated protein C through PAR1-dependent sphingosine 1-phosphate receptor-1 crossactivation. Blood 105: 3178–3184. https://doi.org/10.1182/blood-2004-10-3985
  83. Bae J-S, Yang L, Rezaie AR (2007) Receptors of the protein C activation and activated protein C signaling pathways are colocalized in lipid rafts of endothelial cells. Proc Natl Acad Sci U S A 104: 2867–2872. https://doi.org/10.1073/pnas.0611493104
  84. Donovan FM, Cunningham DD (1998) Signaling pathways involved in thrombin-induced cell protection. J Biol Chem 273: 12746–12752. https://doi.org/10.1074/jbc.273.21.12746
  85. Lee-Rivera I, López E, López-Colomé AM (2022) Diversification of PAR signaling through receptor crosstalk. Cell Mol Biol Lett 27: 77. https://doi.org/10.1186/s11658-022-00382-0
  86. Lin H, Liu AP, Smith TH, Trejo J (2013) Cofactoring and dimerization of proteinase-activated receptors. Pharmacol Rev 65: 1198–1213. https://doi.org/10.1124/pr.111.004747
  87. Abraham LA, MacKie EJ (1999) Modulation of osteoblast-like cell behavior by activation of protease-activated receptor-1. J Bone Miner Res 14: 1320–1329. https://doi.org/10.1359/jbmr.1999.14.8.1320
  88. Madhusudhan T, Wang H, Straub BK, Gröne E, Zhou Q, Shahzad K, Müller-Krebs S, Schwenger V, Gerlitz B, Grinnell BW, Griffin JH, Reiser J, Gröne H-J, Esmon CT, Nawroth PP, Isermann B (2012) Cytoprotective signaling by activated protein C requires protease-activated receptor-3 in podocytes. Blood 119: 874–883. https://doi.org/10.1182/blood-2011-07-365973
  89. Arachiche A, Mumaw MM, de la Fuente M, Nieman MT (2013) Protease-activated receptor 1 (PAR1) and PAR4 heterodimers are required for PAR1-enhanced cleavage of PAR4 by α‑thrombin. J Biol Chem 288: 32553–32562. https://doi.org/10.1074/jbc.M113.472373
  90. Pavic G, Grandoch M, Dangwal S, Jobi K, Rauch BH, Doller A, Oberhuber A, Akhyari P, Schrör K, Fischer JW, Fender AC (2014) Thrombin receptor protease-activated receptor 4 is a key regulator of exaggerated intimal thickening in diabetes mellitus. Circulation 130: 1700–1711. https://doi.org/10.1161/CIRCULATIONAHA.113.007590
  91. Yu G, Jiang P, Xiang Y, Zhang Y, Zhu Z, Zhang C, Lee S, Lee W, Zhang Y (2015) Increased expression of protease-activated receptor 4 and Trefoil factor 2 in human colorectal cancer. PLoS One 10: e0122678. https://doi.org/10.1371/journal.pone.0122678
  92. Gomides LF, Lima OCO, Matos NA, Freitas KM, Francischi JN, Tavares JC, Klein A (2014) Blockade of proteinase-activated receptor 4 inhibits neutrophil recruitment in experimental inflammation in mice. Inflamm Res 63: 935–941. https://doi.org/10.1007/s00011-014-0767-8
  93. O’Brien PJ, Prevost N, Molino M, Hollinger MK, Woolkalis MJ, Woulfe DS, Brass LF (2000) Thrombin responses in human endothelial cells. Contributions from receptors other than PAR1 include the transactivation of PAR2 by thrombin-cleaved PAR1. J Biol Chem 275: 13502–13509. https://doi.org/10.1074/jbc.275.18.13502
  94. Kaneider NC, Leger AJ, Agarwal A, Nguyen N, Perides G, Derian C, Covic L, Kuliopulos A (2007) “Role reversal” for the receptor PAR1 in sepsis-induced vascular damage. Nat Immunol 8: 1303–1312. https://doi.org/10.1038/ni1525
  95. Lidington EA, Steinberg R, Kinderlerer AR, Landis RC, Ohba M, Samarel A, Haskard DO, Mason JC (2005) A role for proteinase-activated receptor 2 and PKC-epsilon in thrombin-mediated induction of decay-accelerating factor on human endothelial cells. Am J Physiol Cell Physiol 289: C1437–C1447. https://doi.org/10.1152/ajpcell.00502.2004
  96. Chen C-H, Paing MM, Trejo J (2004) Termination of protease-activated receptor-1 signaling by beta-arrestins is independent of receptor phosphorylation. J Biol Chem 279: 10020–10031. https://doi.org/10.1074/jbc.M310590200
  97. Paing MM, Stutts AB, Kohout TA, Lefkowitz RJ, Trejo J (2002) beta -Arrestins regulate protease-activated receptor-1 desensitization but not internalization or Down-regulation. J Biol Chem 277: 1292–1300. https://doi.org/10.1074/jbc.M109160200
  98. Stalheim L, Ding Y, Gullapalli A, Paing MM, Wolfe BL, Morris DR, Trejo J (2005) Multiple independent functions of arrestins in the regulation of protease-activated receptor-2 signaling and trafficking. Mol Pharmacol 67: 78–87. https://doi.org/10.1124/mol.104.006072
  99. DeFea KA, Zalevsky J, Thoma MS, Déry O, Mullins RD, Bunnett NW (2000) beta-arrestin-dependent endocytosis of proteinase-activated receptor 2 is required for intracellular targeting of activated ERK1/2. J Cell Biol 148: 1267–1281. https://doi.org/10.1083/jcb.148.6.1267
  100. Abouzeid H, Boisset G, Favez T, Youssef M, Marzouk I, Shakankiry N, Bayoumi N, Descombes P, Agosti C, Munier FL, Schorderet DF (2011) Mutations in the SPARC-related modular calcium-binding protein 1 gene, SMOC1, cause waardenburg anophthalmia syndrome. Am J Hum Genet 88: 92–98. https://doi.org/10.1016/j.ajhg.2010.12.002
  101. De Candia E, Hall SW, Rutella S, Landolfi R, Andrews RK, De Cristofaro R (2001) Binding of thrombin to glycoprotein Ib accelerates the hydrolysis of Par-1 on intact platelets. J Biol Chem 276: 4692–4698. https://doi.org/10.1074/jbc.M008160200
  102. Griffin JH, Zlokovic BV, Mosnier LO (2015) Activated protein C: biased for translation. Blood 125: 2898–2907. https://doi.org/10.1182/blood-2015-02-355974
  103. Bea F, Kreuzer J, Preusch M, Schaab S, Isermann B, Rosenfeld ME, Katus H, Blessing E (2006) Melagatran reduces advanced atherosclerotic lesion size and may promote plaque stability in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 26: 2787–2792. https://doi.org/10.1161/01.ATV.0000246797.05781.ad
  104. Soh UJK, Dores MR, Chen B, Trejo J (2010) Signal transduction by protease-activated receptors. Br J Pharmacol 160: 191–203. https://doi.org/10.1111/j.1476-5381.2010.00705.x
  105. Mahajan-Thakur S, Böhm A, Jedlitschky G, Schrör K, Rauch BH (2015) Sphingosine-1-Phosphate and Its Receptors: A Mutual Link between Blood Coagulation and Inflammation. Mediators Inflamm 2015: 831059. https://doi.org/10.1155/2015/831059
  106. Tohgo A, Choy EW, Gesty-Palmer D, Pierce KL, Laporte S, Oakley RH, Caron MG, Lefkowitz RJ, Luttrell LM (2003) The stability of the G protein-coupled receptor-beta-arrestin interaction determines the mechanism and functional consequence of ERK activation. J Biol Chem 278: 6258–6267. https://doi.org/10.1074/jbc.M212231200
  107. Tohgo A, Pierce KL, Choy EW, Lefkowitz RJ, Luttrell LM (2002) beta-Arrestin scaffolding of the ERK cascade enhances cytosolic ERK activity but inhibits ERK-mediated transcription following angiotensin AT1a receptor stimulation. J Biol Chem 277: 9429–9436. https://doi.org/10.1074/jbc.M106457200
  108. DeFea K (2008) β-arrestins and heterotrimeric G-proteins: collaborators and competitors in signal transduction. Br J Pharmacol 153: S298–S309. https://doi.org/10.1038/sj.bjp.0707508
  109. Huang J, Sun Y, Huang X-Y (2004) Distinct roles for Src tyrosine kinase in beta2-adrenergic receptor signaling to MAPK and in receptor internalization. J Biol Chem 279: 21637–21642. https://doi.org/10.1074/jbc.M400956200
  110. Sun Y, Huang J, Xiang Y, Bastepe M, Jüppner H, Kobilka BK, Zhang JJ, Huang X-Y (2007) Dosage-dependent switch from G protein-coupled to G protein-independent signaling by a GPCR. EMBO J 26: 53–64. https://doi.org/10.1038/sj.emboj.7601502
  111. López-Zambrano M, Rodriguez-Montesinos J, Crespo-Avilan GE, Muñoz-Vega M, Preissner KT (2020) Thrombin Promotes Macrophage Polarization into M1-Like Phenotype to Induce Inflammatory Responses. Thromb Haemost 120: 658–670. https://doi.org/10.1055/s-0040-1703007
  112. Tran T, Stewart AG (2003) Protease-activated receptor (PAR)-independent growth and pro-inflammatory actions of thrombin on human cultured airway smooth muscle. Br J Pharmacol 138: 865–875. https://doi.org/10.1038/sj.bjp.0705106
  113. Gu Y-H, Hawkins BT, Izawa Y, Yoshikawa Y, Koziol JA, Del Zoppo GJ (2022) Intracerebral hemorrhage and thrombin-induced alterations in cerebral microvessel matrix. J Cereb Blood Flow Metab 42: 1732–1747. https://doi.org/10.1177/0271678X221099092
  114. Koller GM, Schafer C, Kemp SS, Aguera KN, Lin PK, Forgy JC, Griffin CT, Davis GE (2020) The pro-inflammatory mediators, IL-1β, TNFα, and thrombin directly induce capillary tube regression. Arterioscler Thromb Vasc Biol 40: 365–377. https://doi.org/10.1161/ATVBAHA.119.313536
  115. Groeneveld D, Pereyra D, Veldhuis Z, Adelmeijer J, Ottens P, Kopec AK, Starlinger P, Lisman T, Luyendyk JP (2019) Intrahepatic fibrin(ogen) deposition drives liver regeneration after partial hepatectomy in mice and humans. Blood 133: 1245–1256. https://doi.org/10.1182/blood-2018-08-869057
  116. Wang X, Xu Y, Li L, Lu W (2021) Thrombin Aggravates Hypoxia/Reoxygenation Injury of Cardiomyocytes by Activating an Autophagy Pathway-Mediated by SIRT1. Med Sci Monit 27: e928480. https://doi.org/10.12659/MSM.928480
  117. Xu Y, Wang X, Liu W, Lu W (2021) Thrombin-activated platelet-rich plasma enhances osteogenic differentiation of human periodontal ligament stem cells by activating SIRT1-mediated autophagy. Eur J Med Res 26: 105. https://doi.org/10.1186/s40001-021-00575-x
  118. Yang C-C, Hsiao L-D, Shih Y-F, Hsu C-K, Hu C-Y, Yang C-M (2022) Thrombin Induces COX-2 and PGE2 Expression via PAR1/PKCalpha/MAPK-Dependent NF-kappaB Activation in Human Tracheal Smooth Muscle Cells. Mediators Inflamm 2022: 4600029. https://doi.org/10.1155/2022/4600029
  119. Motta J-P, Palese S, Giorgio C, Chapman K, Denadai-Souza A, Rousset P, Sagnat D, Guiraud L, Edir A, Seguy C, Alric L, Bonnet D, Bournet B, Buscail L, Gilletta C, Buret AG, Wallace JL, Hollenberg MD, Oswald E, Barocelli E, Le Grand S, Le Grand B, Deraison C, Vergnolle N (2021) Increased Mucosal Thrombin is Associated with Crohn’s Disease and Causes Inflammatory Damage through Protease-activated Receptors Activation. J Crohns Colitis 15: 787–799. https://doi.org/10.1093/ecco-jcc/jjaa229
  120. Zheng X, Wang P, Jia M, Li Q, Zhang A, Zhou Q (2022) Baicalin Alleviates Thrombin-Induced Inflammation in Vascular Smooth Muscle Cells. Biomed Res Int 2022: 5799308. https://doi.org/10.1155/2022/5799308
  121. Ye F, Garton HJL, Hua Y, Keep RF, Xi G (2021) The Role of Thrombin in Brain Injury After Hemorrhagic and Ischemic Stroke. Transl Stroke Res 12: 496–511. https://doi.org/10.1007/s12975-020-00855-4
  122. Molinar-Inglis O, Wozniak JM, Grimsey NJ, Orduña-Castillo LB, Cheng N, Lin Y, Gonzalez Ramirez ML, Birch CA, Lapek JD, Gonzalez DJ, Trejo J (2022) Phosphoproteomic analysis of thrombin- and p38 MAPK-regulated signaling networks in endothelial cells. J Biol Chem 298: 101801. https://doi.org/10.1016/j.jbc.2022.101801
  123. Falcione S, Munsterman D, Joy T, Kamtchum-Tatuene J, Sykes G, Jickling G (2022) Association of Thrombin Generation With Leukocyte Inflammatory Profile in Patients With Acute Ischemic Stroke. Neurology 99: e1356–e1363. https://doi.org/10.1212/WNL.0000000000200909
  124. Zhang Y, Sun L, Wang X, Zhou Q (2023) Integrative analysis of HASMCs gene expression profile revealed the role of thrombin in the pathogenesis of atherosclerosis. BMC Cardiovasc Disord 23: 191. https://doi.org/10.1186/s12872-023-03211-0
  125. Lesbo M, Hviid CVB, Brink O, Juul S, Borris LC, Hvas A-M (2023) Age-dependent thrombin generation predicts 30-day mortality and symptomatic thromboembolism after multiple trauma. Sci Rep 13: 1681. https://doi.org/10.1038/s41598-023-28474-7
  126. Eivazzadeh-Keihan R, Saadatidizaji Z, Maleki A, de la Guardia M, Mahdavi M, Barzegar S, Ahadian S (2022) Recent Progresses in Development of Biosensors for Thrombin Detection. Biosensors (Basel) 12: 767. https://doi.org/10.3390/bios12090767
  127. Sloan AR, Lee-Poturalski C, Hoffman HC, Harris PL, Elder TE, Richardson B, Kerstetter-Fogle A, Cioffi G, Schroer J, Desai A, Cameron M, Barnholtz-Sloan J, Rich J, Jankowsky E, Sen Gupta A, Sloan AE (2022) Glioma stem cells activate platelets by plasma-independent thrombin production to promote glioblastoma tumorigenesis. Neurooncol Adv 4: vdac172. https://doi.org/10.1093/noajnl/vdac172
  128. Leung LL, Myles T, Morser J (2023) Thrombin Cleavage of Osteopontin and the Host Anti-Tumor Immune Response. Cancers (Basel) 15: 3480. https://doi.org/10.3390/cancers15133480
  129. Berkowitz S, Gofrit SG, Aharoni SA, Golderman V, Qassim L, Goldberg Z, Dori A, Maggio N, Chapman J, Shavit-Stein E (2022) LPS-Induced Coagulation and Neuronal Damage in a Mice Model Is Attenuated by Enoxaparin. Int J Mol Sci 23: 10472. https://doi.org/10.3390/ijms231810472
  130. Conway EM (2019) Thrombin: Coagulation’s master regulator of innate immunity. J Thromb Haemost 17: 1785–1789. https://doi.org/10.1111/jth.14586
  131. Rittirsch D, Flierl MA, Ward PA (2008) Harmful molecular mechanisms in sepsis. Nat Rev Immunol 8: 776–787. https://doi.org/10.1038/nri2402
  132. Cohen I, Rider P, Vornov E, Tomas M, Tudor C, Wegner M, Brondani L, Freudenberg M, Mittler G, Ferrando-May E, Dinarello CA, Apte RN, Schneider R (2015) IL-1α is a DNA damage sensor linking genotoxic stress signaling to sterile inflammation and innate immunity. Sci Rep 5: 14756. https://doi.org/10.1038/srep14756
  133. Burzynski LC, Humphry M, Pyrillou K, Wiggins KA, Chan JNE, Figg N, Kitt LL, Summers C, Tatham KC, Martin PB, Bennett MR, Clarke MCH (2019) The Coagulation and Immune Systems Are Directly Linked through the Activation of Interleukin-1α by Thrombin. Immunity 50: 1033–1042.e6. https://doi.org/10.1016/j.immuni.2019.03.003
  134. Treeck O, Buechler C, Ortmann O (2019) Chemerin and Cancer. Int J Mol Sci 20: 3750. https://doi.org/10.3390/ijms20153750
  135. Buechler C, Feder S, Haberl EM, Aslanidis C (2019) Chemerin Isoforms and Activity in Obesity. Int J Mol Sci 20: 1128. https://doi.org/10.3390/ijms20051128
  136. Du X, Myles T, Morser J, Leung LL (2009) Prochemerin Is a New Substrate for Thrombin. Blood 114: 3591. https://doi.org/10.1182/blood.V114.22.3591.3591
  137. Du X-Y, Zabel BA, Myles T, Allen SJ, Handel TM, Lee PP, Butcher EC, Leung LL (2009) Regulation of chemerin bioactivity by plasma carboxypeptidase N, carboxypeptidase B (activated thrombin-activable fibrinolysis inhibitor), and platelets. J Biol Chem 284: 751–758. https://doi.org/10.1074/jbc.M805000200
  138. Ferland DJ, Mullick AE, Watts SW (2020) Chemerin as a Driver of Hypertension: A Consideration. Am J Hypertens 33: 975–986. https://doi.org/10.1093/ajh/hpaa084
  139. Macvanin MT, Rizzo M, Radovanovic J, Sonmez A, Paneni F, Isenovic ER (2022) Role of Chemerin in Cardiovascular Diseases. Biomedicines 10: 2970. https://doi.org/10.3390/biomedicines10112970
  140. Wittamer V, Franssen J-D, Vulcano M, Mirjolet J-F, Le Poul E, Migeotte I, Brézillon S, Tyldesley R, Blanpain C, Detheux M, Mantovani A, Sozzani S, Vassart G, Parmentier M, Communi D (2003) Specific Recruitment of Antigen-presenting Cells by Chemerin, a Novel Processed Ligand from Human Inflammatory Fluids. J Exp Med 198: 977–985. https://doi.org/10.1084/jem.20030382
  141. Samson M, Edinger AL, Stordeur P, Rucker J, Verhasselt V, Sharron M, Govaerts C, Mollereau C, Vassart G, Doms RW, Parmentier M (1998) ChemR23, a putative chemoattractant receptor, is expressed in monocyte-derived dendritic cells and macrophages and is a coreceptor for SIV and some primary HIV-1 strains. Eur J Immunol 28: 1689–1700. https://doi.org/10.1002/(SICI)1521-4141(199805)28:05<1689::AID-IMMU1689>3.0.CO;2-I
  142. Zabel BA, Silverio AM, Butcher EC (2005) Chemokine-like receptor 1 expression and chemerin-directed chemotaxis distinguish plasmacytoid from myeloid dendritic cells in human blood. J Immunol 174: 244–251. https://doi.org/10.4049/jimmunol.174.1.244
  143. Yamawaki H, Kameshima S, Usui T, Okada M, Hara Y (2012) A novel adipocytokine, chemerin exerts anti-inflammatory roles in human vascular endothelial cells. Biochem Biophys Res Commun 423: 152–157. https://doi.org/10.1016/j.bbrc.2012.05.103
  144. Haybar H, Shahrabi S, Rezaeeyan H, Shirzad R, Saki N (2019) Endothelial Cells: From Dysfunction Mechanism to Pharmacological Effect in Cardiovascular Disease. Cardiovasc Toxicol 19: 13–22. https://doi.org/10.1007/s12012-018-9493-8
  145. Dimitriadis GK, Kaur J, Adya R, Miras AD, Mattu HS, Hattersley JG, Kaltsas G, Tan BK, Randeva HS (2018) Chemerin induces endothelial cell inflammation: activation of nuclear factor-kappa beta and monocyte-endothelial adhesion. Oncotarget 9: 16678–16690. https://doi.org/10.18632/oncotarget.24659
  146. Neves KB, Nguyen Dinh Cat A, Lopes RAM, Rios FJ, Anagnostopoulou A, Lobato NS, de Oliveira AM, Tostes RC, Montezano AC, Touyz RM (2015) Chemerin Regulates Crosstalk Between Adipocytes and Vascular Cells Through Nox. Hypertension 66: 657–666. https://doi.org/10.1161/HYPERTENSIONAHA.115.05616
  147. Landgraf K, Friebe D, Ullrich T, Kratzsch J, Dittrich K, Herberth G, Adams V, Kiess W, Erbs S, Körner A (2012) Chemerin as a Mediator between Obesity and Vascular Inflammation in Children. J Clin Endocrinol & Metabol 97: E556–E564. https://doi.org/10.1210/jc.2011-2937
  148. Neves KB, Lobato NS, Lopes RAM, Filgueira FP, Zanotto CZ, Oliveira AM, Tostes RC (2014) Chemerin reduces vascular nitric oxide/cGMP signalling in rat aorta: a link to vascular dysfunction in obesity? Clin Sci 127: 111–122. https://doi.org/10.1042/CS20130286
  149. Didion SP, Heistad DD, Faraci FM (2001) Mechanisms That Produce Nitric Oxide–Mediated Relaxation of Cerebral Arteries During Atherosclerosis. Stroke 32: 761–766. https://doi.org/10.1161/01.STR.32.3.761
  150. Xie Y, Liu L (2022) Role of Chemerin/ChemR23 axis as an emerging therapeutic perspective on obesity-related vascular dysfunction. J Transl Med 20: 141. https://doi.org/10.1186/s12967-021-03220-7
  151. Gallwitz M, Enoksson M, Thorpe M, Hellman L (2012) The extended cleavage specificity of human thrombin. PLoS One 7: e31756. https://doi.org/10.1371/journal.pone.0031756
  152. Versteeg HH, Heemskerk JWM, Levi M, Reitsma PH (2013) New fundamentals in hemostasis. Physiol Rev 93: 327–358. https://doi.org/10.1152/physrev.00016.2011
  153. van der Meijden PEJ, Heemskerk JWM (2019) Platelet biology and functions: new concepts and clinical perspectives. Nat Rev Cardiol 16: 166–179. https://doi.org/10.1038/s41569-018-0110-0
  154. Garraud O, Cognasse F (2015) Are Platelets Cells? And if Yes, are They Immune Cells? Front Immunol 6: 70. https://doi.org/10.3389/fimmu.2015.00070
  155. Swieringa F, Spronk HMH, Heemskerk JWM, van der Meijden PEJ (2018) Integrating platelet and coagulation activation in fibrin clot formation. Res Practice in Thrombosis and Haemostasis 2: 450–460. https://doi.org/10.1002/rth2.12107
  156. Jin J, Daniel JL, Kunapuli SP (1998) Molecular basis for ADP-induced platelet activation. II. The P2Y1 receptor mediates ADP-induced intracellular calcium mobilization and shape change in platelets. J Biol Chem 273: 2030–2034. https://doi.org/10.1074/jbc.273.4.2030
  157. Li Z, Delaney MK, O’Brien KA, Du X (2010) Signaling during platelet adhesion and activation. Arterioscler Thromb Vasc Biol 30: 2341–2349. https://doi.org/10.1161/ATVBAHA.110.207522
  158. Vieira-de-Abreu A, Campbell RA, Weyrich AS, Zimmerman GA (2012) Platelets: versatile effector cells in hemostasis, inflammation, and the immune continuum. Semin Immunopathol 34: 5–30. https://doi.org/10.1007/s00281-011-0286-4
  159. Linden MD (2013) Platelet physiology. Methods Mol Biol 992: 13–30. https://doi.org/10.1007/978-1-62703-339-8_2
  160. Subramaniam M, Frenette PS, Saffaripour S, Johnson RC, Hynes RO, Wagner DD (1996) Defects in hemostasis in P-selectin-deficient mice. Blood 87: 1238–1242.
  161. Schrottmaier WC, Mussbacher M, Salzmann M, Assinger A (2020) Platelet-leukocyte interplay during vascular disease. Atherosclerosis 307: 109–120. https://doi.org/10.1016/j.atherosclerosis.2020.04.018
  162. Henn V, Slupsky JR, Gräfe M, Anagnostopoulos I, Förster R, Müller-Berghaus G, Kroczek RA (1998) CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 391: 591–594. https://doi.org/10.1038/35393
  163. Denis MM, Tolley ND, Bunting M, Schwertz H, Jiang H, Lindemann S, Yost CC, Rubner FJ, Albertine KH, Swoboda KJ, Fratto CM, Tolley E, Kraiss LW, McIntyre TM, Zimmerman GA, Weyrich AS (2005) Escaping the nuclear confines: signal-dependent pre-mRNA splicing in anucleate platelets. Cell 122: 379–391. https://doi.org/10.1016/j.cell.2005.06.015
  164. Kraemer BF, Campbell RA, Schwertz H, Cody MJ, Franks Z, Tolley ND, Kahr WHA, Lindemann S, Seizer P, Yost CC, Zimmerman GA, Weyrich AS (2011) Novel anti-bacterial activities of β-defensin 1 in human platelets: suppression of pathogen growth and signaling of neutrophil extracellular trap formation. PLoS Pathog 7: e1002355. https://doi.org/10.1371/journal.ppat.1002355
  165. Brown GT, Narayanan P, Li W, Silverstein RL, McIntyre TM (2013) Lipopolysaccharide stimulates platelets through an IL-1β autocrine loop. J Immunol 191: 5196–5203. https://doi.org/10.4049/jimmunol.1300354
  166. Olumuyiwa-Akeredolu O-O, Page MJ, Soma P, Pretorius E (2019) Platelets: emerging facilitators of cellular crosstalk in rheumatoid arthritis. Nat Rev Rheumatol 15: 237–248. https://doi.org/10.1038/s41584-019-0187-9
  167. Lê VB, Schneider JG, Boergeling Y, Berri F, Ducatez M, Guerin J-L, Adrian I, Errazuriz-Cerda E, Frasquilho S, Antunes L, Lina B, Bordet J-C, Jandrot-Perrus M, Ludwig S, Riteau B (2015) Platelet activation and aggregation promote lung inflammation and influenza virus pathogenesis. Am J Respir Crit Care Med 191: 804–819. https://doi.org/10.1164/rccm.201406-1031OC
  168. Middleton EA, Weyrich AS, Zimmerman GA (2016) Platelets in Pulmonary Immune Responses and Inflammatory Lung Diseases. Physiol Rev 96: 1211–1259. https://doi.org/10.1152/physrev.00038.2015
  169. Yaron M, Djaldetti M (1978) Platelets in synovial fluid. Arthritis Rheum 21: 607–608. https://doi.org/10.1002/art.1780210509
  170. Farr M, Wainwright A, Salmon M, Hollywell CA, Bacon PA (1984) Platelets in the synovial fluid of patients with rheumatoid arthritis. Rheumatol Int 4: 13–17. https://doi.org/10.1007/BF00683878
  171. Yan M, Jurasz P (2016) The role of platelets in the tumor microenvironment: From solid tumors to leukemia. Biochim Biophys Acta 1863: 392–400. https://doi.org/10.1016/j.bbamcr.2015.07.008
  172. Hottz ED, Oliveira MF, Nunes PCG, Nogueira RMR, Valls-de-Souza R, Da Poian AT, Weyrich AS, Zimmerman GA, Bozza PT, Bozza FA (2013) Dengue induces platelet activation, mitochondrial dysfunction and cell death through mechanisms that involve DC-SIGN and caspases. J Thromb Haemost 11: 951–962. https://doi.org/10.1111/jth.12178
  173. Koupenova M, Vitseva O, MacKay CR, Beaulieu LM, Benjamin EJ, Mick E, Kurt-Jones EA, Ravid K, Freedman JE (2014) Platelet-TLR7 mediates host survival and platelet count during viral infection in the absence of platelet-dependent thrombosis. Blood 124: 791–802. https://doi.org/10.1182/blood-2013-11-536003
  174. Vogel S, Arora T, Wang X, Mendelsohn L, Nichols J, Allen D, Shet AS, Combs CA, Quezado ZMN, Thein SL (2018) The platelet NLRP3 inflammasome is upregulated in sickle cell disease via HMGB1/TLR4 and Bruton tyrosine kinase. Blood Adv 2: 2672–2680. https://doi.org/10.1182/bloodadvances.2018021709
  175. Tsai J-C, Lin Y-W, Huang C-Y, Lin C-Y, Tsai Y-T, Shih C-M, Lee C-Y, Chen Y-H, Li C-Y, Chang N-C, Lin F-Y, Tsai C-S (2014) The role of calpain-myosin 9-Rab7b pathway in mediating the expression of Toll-like receptor 4 in platelets: a novel mechanism involved in α-granules trafficking. PLoS One 9: e85833. https://doi.org/10.1371/journal.pone.0085833
  176. Chao C-H, Wu W-C, Lai Y-C, Tsai P-J, Perng G-C, Lin Y-S, Yeh T-M (2019) Dengue virus nonstructural protein 1 activates platelets via Toll-like receptor 4, leading to thrombocytopenia and hemorrhage. PLoS Pathog 15: e1007625. https://doi.org/10.1371/journal.ppat.1007625
  177. Shiraki R, Inoue N, Kawasaki S, Takei A, Kadotani M, Ohnishi Y, Ejiri J, Kobayashi S, Hirata K-I, Kawashima S, Yokoyama M (2004) Expression of Toll-like receptors on human platelets. Thromb Res 113: 379–385. https://doi.org/10.1016/j.thromres.2004.03.023
  178. Anabel A-S, Eduardo P-C, Pedro Antonio H-C, Carlos S-M, Juana N-M, Honorio T-A, Nicolás V-S, Sergio Roberto A-R (2014) Human platelets express Toll-like receptor 3 and respond to poly I:C. Hum Immunol 75: 1244–1251. https://doi.org/10.1016/j.humimm.2014.09.013
  179. Zakeri A, Russo M (2018) Dual Role of Toll-like Receptors in Human and Experimental Asthma Models. Front Immunol 9: 1027. https://doi.org/10.3389/fimmu.2018.01027
  180. Shashkin PN, Brown GT, Ghosh A, Marathe GK, McIntyre TM (2008) Lipopolysaccharide is a Direct Agonist for Platelet RNA Splicing. J Immunol 181: 3495–3502.
  181. Cognasse F, Hamzeh-Cognasse H, Lafarge S, Delezay O, Pozzetto B, McNicol A, Garraud O (2008) Toll-like receptor 4 ligand can differentially modulate the release of cytokines by human platelets. Br J Haematol 141: 84–91. https://doi.org/10.1111/j.1365-2141.2008.06999.x
  182. Berthet J, Damien P, Hamzeh-Cognasse H, Arthaud C-A, Eyraud M-A, Zéni F, Pozzetto B, McNicol A, Garraud O, Cognasse F (2012) Human platelets can discriminate between various bacterial LPS isoforms via TLR4 signaling and differential cytokine secretion. Clin Immunol 145: 189–200. https://doi.org/10.1016/j.clim.2012.09.004
  183. Zhang G, Han J, Welch EJ, Ye RD, Voyno-Yasenetskaya TA, Malik AB, Du X, Li Z (2009) Lipopolysaccharide stimulates platelet secretion and potentiates platelet aggregation via TLR4/MyD88 and the cGMP-dependent protein kinase pathway. J Immunol 182: 7997–8004. https://doi.org/10.4049/jimmunol.0802884
  184. Koessler J, Niklaus M, Weber K, Koessler A, Kuhn S, Boeck M, Kobsar A (2019) The Role of Human Platelet Preparation for Toll-Like Receptors 2 and 4 Related Platelet Responsiveness. TH Open 3: e94–e102. https://doi.org/10.1055/s-0039-1685495
  185. Damien P, Cognasse F, Eyraud M-A, Arthaud C-A, Pozzetto B, Garraud O, Hamzeh-Cognasse H (2015) LPS stimulation of purified human platelets is partly dependent on plasma soluble CD14 to secrete their main secreted product, soluble-CD40-Ligand. BMC Immunol 16: 3. https://doi.org/10.1186/s12865-015-0067-2
  186. Gambaryan S, Kobsar A, Rukoyatkina N, Herterich S, Geiger J, Smolenski A, Lohmann SM, Walter U (2010) Thrombin and Collagen Induce a Feedback Inhibitory Signaling Pathway in Platelets Involving Dissociation of the Catalytic Subunit of Protein Kinase A from an NFκB-IκB Complex*. J Biol Chem 285: 18352–18363. https://doi.org/10.1074/jbc.M109.077602
  187. Hachem A, Yacoub D, Zaid Y, Mourad W, Merhi Y (2012) Involvement of nuclear factor κB in platelet CD40 signaling. Biochem Biophys Res Commun 425: 58–63. https://doi.org/10.1016/j.bbrc.2012.07.049
  188. Lannan KL, Sahler J, Kim N, Spinelli SL, Maggirwar SB, Garraud O, Cognasse F, Blumberg N, Phipps RP (2015) Breaking the mold: transcription factors in the anucleate platelet and platelet-derived microparticles. Front Immunol 6: 48. https://doi.org/10.3389/fimmu.2015.00048
  189. Unsworth AJ, Flora GD, Gibbins JM (2018) Non-genomic effects of nuclear receptors: insights from the anucleate platelet. Cardiovasc Res 114: 645–655. https://doi.org/10.1093/cvr/cvy044
  190. Cognasse F, Hamzeh H, Chavarin P, Acquart S, Genin C, Garraud O (2005) Evidence of Toll-like receptor molecules on human platelets. Immunol Cell Biol 83: 196–198. https://doi.org/10.1111/j.1440-1711.2005.01314.x
  191. Thon JN, Peters CG, Machlus KR, Aslam R, Rowley J, Macleod H, Devine MT, Fuchs TA, Weyrich AS, Semple JW, Flaumenhaft R, Italiano JE (2012) T granules in human platelets function in TLR9 organization and signaling. J Cell Biol 198: 561–574. https://doi.org/10.1083/jcb.201111136
  192. Hally KE, La Flamme AC, Larsen PD, Harding SA (2016) Toll-like receptor 9 expression and activation in acute coronary syndrome patients on dual anti-platelet therapy. Thromb Res 148: 89–95. https://doi.org/10.1016/j.thromres.2016.10.026
  193. Panigrahi S, Ma Y, Hong L, Gao D, West XZ, Salomon RG, Byzova TV, Podrez EA (2013) Engagement of platelet toll-like receptor 9 by novel endogenous ligands promotes platelet hyperreactivity and thrombosis. Circ Res 112: 103–112. https://doi.org/10.1161/CIRCRESAHA.112.274241
  194. Popović M, Smiljanić K, Dobutović B, Syrovets T, Simmet T, Isenović ER (2012) Thrombin and vascular inflammation. Mol Cell Biochem 359: 301–313. https://doi.org/10.1007/s11010-011-1024-x
  195. De Pablo-Moreno JA, Serrano LJ, Revuelta L, Sánchez MJ, Liras A (2022) The Vascular Endothelium and Coagulation: Homeostasis, Disease, and Treatment, with a Focus on the Von Willebrand Factor and Factors VIII and V. Int J Mol Sci 23: 8283. https://doi.org/10.3390/ijms23158283
  196. Tokunou T, Ichiki T, Takeda K, Funakoshi Y, Iino N, Shimokawa H, Egashira K, Takeshita A (2001) Thrombin induces interleukin-6 expression through the cAMP response element in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 21: 1759–1763. https://doi.org/10.1161/hq1101.098489
  197. Popovic M, Laumonnier Y, Burysek L, Syrovets T, Simmet T (2008) Thrombin-induced expression of endothelial CX3CL1 potentiates monocyte CCL2 production and transendothelial migration. J Leukoc Biol 84: 215–223. https://doi.org/10.1189/jlb.0907652
  198. Szaba FM, Smiley ST (2002) Roles for thrombin and fibrin(ogen) in cytokine/chemokine production and macrophage adhesion in vivo. Blood 99: 1053–1059. https://doi.org/10.1182/blood.v99.3.1053
  199. Chen D, Carpenter A, Abrahams J, Chambers RC, Lechler RI, McVey JH, Dorling A (2008) Protease-activated receptor 1 activation is necessary for monocyte chemoattractant protein 1-dependent leukocyte recruitment in vivo. J Exp Med 205: 1739–1746. https://doi.org/10.1084/jem.20071427
  200. Camerer E, Regard JB, Cornelissen I, Srinivasan Y, Duong DN, Palmer D, Pham TH, Wong JS, Pappu R, Coughlin SR (2009) Sphingosine-1-phosphate in the plasma compartment regulates basal and inflammation-induced vascular leak in mice. J Clin Invest 119: 1871–1879. https://doi.org/10.1172/jci38575
  201. Sun X-J, Chen M, Zhao M-H (2019) Thrombin Contributes to Anti-myeloperoxidase Antibody Positive IgG-Mediated Glomerular Endothelial Cells Activation Through SphK1-S1P-S1PR3 Signaling. Front Immunol 10: 237. https://doi.org/10.3389/fimmu.2019.00237
  202. Delekta PC, Apel IJ, Gu S, Siu K, Hattori Y, McAllister-Lucas LM, Lucas PC (2010) Thrombin-dependent NF-{kappa}B activation and monocyte/endothelial adhesion are mediated by the CARMA3·Bcl10·MALT1 signalosome. J Biol Chem 285: 41432–41442. https://doi.org/10.1074/jbc.M110.158949
  203. Hirano K (2007) The roles of proteinase-activated receptors in the vascular physiology and pathophysiology. Arterioscler Thromb Vasc Biol 27: 27–36. https://doi.org/10.1161/01.ATV.0000251995.73307.2d
  204. Terada M, Kelly EAB, Jarjour NN (2004) Increased thrombin activity after allergen challenge: a potential link to airway remodeling? Am J Respir Crit Care Med 169: 373–377. https://doi.org/10.1164/rccm.200308-1156OC
  205. Козлов ВА, Тихонова ЕП, Савченко АА, Кудрявцев ИВ, Андронова НВ, Анисимова ЕН, Головкин АС, Демина ДВ, Здзитовецкий ДЭ, Калинина ЮС, Каспаров ЭВ, Козлов ИГ, Корсунский ИА, Кудлай ДА, Кузьмина ТЮ, Миноранская НС, Продеус АП, Старикова ЭА, Черданцев ДВ, Чесноков АБ, Шестерня ПА, Борисов АГ (2021) Клиническая иммунология. Практическое пособие для инфекционистов. Красноярск. Изд-во Поликор. [Kozlov VA, Tikhonova EP, Savchenko AA, Kudryavtsev IV, Andronova NV, Anisimova EN, Golovkin AS, Demina DV, Zdzitovetsky DE, Kalinina YS, Kasparov EV, Kozlov IG, Korsunsky IA, Kudlay DA, Kuzmina TY, Minoranskaya NS, Prodeus AP, Starikova EA, Cherdantsev DV, Chesnokov AB, Shesternya PA, Borisov AG (2021) Clinical immunology. A practical guide for infectious diseases. Krasnoyarsk. Publ House Polikor. (In Russ)].
  206. Noubouossie DF, Reeves BN, Strahl BD, Key NS (2019) Neutrophils: back in the thrombosis spotlight. Blood 133: 2186–2197. https://doi.org/10.1182/blood-2018-10-862243
  207. Wang Y, Li M, Stadler S, Correll S, Li P, Wang D, Hayama R, Leonelli L, Han H, Grigoryev SA, Allis CD, Coonrod SA (2009) Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J Cell Biol 184: 205–213. https://doi.org/10.1083/jcb.200806072
  208. Li P, Li M, Lindberg MR, Kennett MJ, Xiong N, Wang Y (2010) PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J Exp Med 207: 1853–1862. https://doi.org/10.1084/jem.20100239
  209. Kahn ML, Nakanishi-Matsui M, Shapiro MJ, Ishihara H, Coughlin SR (1999) Protease-activated receptors 1 and 4 mediate activation of human platelets by thrombin. J Clin Invest 103: 879–887. https://doi.org/10.1172/JCI6042
  210. St-Onge M, Lagarde S, Laflamme C, Rollet-Labelle E, Marois L, Naccache PH, Pouliot M (2010) Proteinase-activated receptor-2 up-regulation by Fcγ-receptor activation in human neutrophils. The FASEB J 24: 2116–2125. https://doi.org/10.1096/fj.09-146167
  211. Jenkins AL, Howells GL, Scott E, Le Bonniec BF, Curtis MA, Stone SR (1995) The response to thrombin of human neutrophils: evidence for two novel receptors. J Cell Sci 108 (Pt 9): 3059–3066. https://doi.org/10.1242/jcs.108.9.3059
  212. Hoeksema M, van Eijk M, Haagsman HP, Hartshorn KL (2016) Histones as mediators of host defense, inflammation and thrombosis. Future Microbiol 11: 441–453. https://doi.org/10.2217/fmb.15.151
  213. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A (2004) Neutrophil extracellular traps kill bacteria. Science 303: 1532–1535. https://doi.org/10.1126/science.1092385
  214. Gould TJ, Vu TT, Swystun LL, Dwivedi DJ, Mai SHC, Weitz JI, Liaw PC (2014) Neutrophil extracellular traps promote thrombin generation through platelet-dependent and platelet-independent mechanisms. Arterioscler Thromb Vasc Biol 34: 1977–1984. https://doi.org/10.1161/ATVBAHA.114.304114
  215. Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers DD, Wrobleski SK, Wakefield TW, Hartwig JH, Wagner DD (2010) Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A 107: 15880–15885. https://doi.org/10.1073/pnas.1005743107
  216. McDonald B, Davis RP, Kim S-J, Tse M, Esmon CT, Kolaczkowska E, Jenne CN (2017) Platelets and neutrophil extracellular traps collaborate to promote intravascular coagulation during sepsis in mice. Blood 129: 1357–1367. https://doi.org/10.1182/blood-2016-09-741298
  217. Longstaff C, Varjú I, Sótonyi P, Szabó L, Krumrey M, Hoell A, Bóta A, Varga Z, Komorowicz E, Kolev K (2013) Mechanical stability and fibrinolytic resistance of clots containing fibrin, DNA, and histones. J Biol Chem 288: 6946–6956. https://doi.org/10.1074/jbc.M112.404301
  218. Lim CH, Adav SS, Sze SK, Choong YK, Saravanan R, Schmidtchen A (2018) Thrombin and Plasmin Alter the Proteome of Neutrophil Extracellular Traps. Front Immunol 9: 1554. https://doi.org/10.3389/fimmu.2018.01554
  219. Unuvar Purcu D, Korkmaz A, Gunalp S, Helvaci DG, Erdal Y, Dogan Y, Suner A, Wingender G, Sag D (2022) Effect of stimulation time on the expression of human macrophage polarization markers. PLoS One 17: e0265196. https://doi.org/10.1371/journal.pone.0265196
  220. Peng Q, Nowocin A, Ratnasothy K, Smith RA, Smyth LA, Lechler RI, Dorling A, Lombardi G (2023) Inhibition of thrombin on endothelium enhances recruitment of regulatory T cells during IRI and when combined with adoptive Treg transfer, significantly protects against acute tissue injury and prolongs allograft survival. Front Immunol 13.
  221. Ferrante CJ, Pinhal-Enfield G, Elson G, Cronstein BN, Hasko G, Outram S, Leibovich SJ (2013) The adenosine-dependent angiogenic switch of macrophages to an M2-like phenotype is independent of interleukin-4 receptor alpha (IL-4Rα) signaling. Inflammation 36: 921–931. https://doi.org/10.1007/s10753-013-9621-3
  222. Yang B-G, Kim A-R, Lee D, An SB, Shim YA, Jang MH (2023) Degranulation of Mast Cells as a Target for Drug Development. Cells 12: 1506. https://doi.org/10.3390/cells12111506
  223. Britzen-Laurent N, Weidinger C, Stürzl M (2023) Contribution of Blood Vessel Activation, Remodeling and Barrier Function to Inflammatory Bowel Diseases. Int J Mol Sci 24: 5517. https://doi.org/10.3390/ijms24065517
  224. Asero R, Riboldi P, Tedeschi A, Cugno M, Meroni P (2007) Chronic urticaria: A disease at a crossroad between autoimmunity and coagulation. Autoimmun Rev 7: 71–76. https://doi.org/10.1016/j.autrev.2007.08.002
  225. Gordon JR, Zhang X, Stevenson K, Cosford K (2000) Thrombin Induces IL-6 but Not TNFα Secretion by Mouse Mast Cells: Threshold-Level Thrombin Receptor and Very Low Level FcϵRI Signaling Synergistically Enhance IL-6 Secretion. Cell Immunol 205: 128–135. https://doi.org/10.1006/cimm.2000.1714
  226. Rallabhandi P, Nhu QM, Toshchakov VY, Piao W, Medvedev AE, Hollenberg MD, Fasano A, Vogel SN (2008) Analysis of proteinase-activated receptor 2 and TLR4 signal transduction: a novel paradigm for receptor cooperativity. J Biol Chem 283: 24314–24325. https://doi.org/10.1074/jbc.M804800200
  227. Nhu QM, Shirey K, Teijaro JR, Farber DL, Netzel-Arnett S, Antalis TM, Fasano A, Vogel SN (2010) Novel signaling interactions between proteinase-activated receptor 2 and Toll-like receptors in vitro and in vivo. Mucosal Immunol 3: 29–39. https://doi.org/10.1038/mi.2009.120
  228. Nhu QM, Shirey KA, Pennini ME, Stiltz J, Vogel SN (2012) Proteinase-activated receptor 2 activation promotes an anti-inflammatory and alternatively activated phenotype in LPS-stimulated murine macrophages. Innate Immunol 18: 193–203. https://doi.org/10.1177/1753425910395044
  229. Bucci M, Vellecco V, Harrington L, Brancaleone V, Roviezzo F, Mattace Raso G, Ianaro A, Lungarella G, De Palma R, Meli R, Cirino G (2013) Cross-talk between toll-like receptor 4 (TLR4) and proteinase-activated receptor 2 (PAR(2)) is involved in vascular function. Br J Pharmacol 168: 411–420. https://doi.org/10.1111/j.1476-5381.2012.02205.x
  230. Kersse K, Bertrand MJM, Lamkanfi M, Vandenabeele P (2011) NOD-like receptors and the innate immune system: coping with danger, damage and death. Cytokine Growth Factor Rev 22: 257–276. https://doi.org/10.1016/j.cytogfr.2011.09.003
  231. Uehara A, Imamura T, Potempa J, Travis J, Takada H (2008) Gingipains from Porphyromonas gingivalis synergistically induce the production of proinflammatory cytokines through protease-activated receptors with Toll-like receptor and NOD1/2 ligands in human monocytic cells. Cell Microbiol 10: 1181–1189. https://doi.org/10.1111/j.1462-5822.2008.01119.x
  232. Kissel K, Berber S, Nockher A, Santoso S, Bein G, Hackstein H (2006) Human platelets target dendritic cell differentiation and production of proinflammatory cytokines. Transfusion 46: 818–827. https://doi.org/10.1111/j.1537-2995.2006.00802.x
  233. Osugi Y, Vuckovic S, Hart DNJ (2002) Myeloid blood CD11c(+) dendritic cells and monocyte-derived dendritic cells differ in their ability to stimulate T lymphocytes. Blood 100: 2858–2866. https://doi.org/10.1182/blood.V100.8.2858
  234. Li X, Syrovets T, Paskas S, Laumonnier Y, Simmet T (2008) Mature dendritic cells express functional thrombin receptors triggering chemotaxis and CCL18/pulmonary and activation-regulated chemokine induction. J Immunol 181: 1215–1223. https://doi.org/10.4049/jimmunol.181.2.1215
  235. Rullier A, Gillibert-Duplantier J, Costet P, Cubel G, Haurie V, Petibois C, Taras D, Dugot-Senant N, Deleris G, Bioulac-Sage P, Rosenbaum J (2008) Protease-activated receptor 1 knockout reduces experimentally induced liver fibrosis. Am J Physiol Gastrointest Liver Physiol 294: G226-G235. https://doi.org/10.1152/ajpgi.00444.2007
  236. Vowinkel T, Wood KC, Stokes KY, Russell J, Tailor A, Anthoni C, Senninger N, Krieglstein CF, Granger DN (2007) Mechanisms of platelet and leukocyte recruitment in experimental colitis. Am J Physiol Gastrointest Liver Physiol 293: G1054-G1060. https://doi.org/10.1152/ajpgi.00350.2007
  237. Niessen F, Schaffner F, Furlan-Freguia C, Pawlinski R, Bhattacharjee G, Chun J, Derian CK, Andrade-Gordon P, Rosen H, Ruf W (2008) Dendritic cell PAR1-S1P3 signalling couples coagulation and inflammation. Nature 452: 654–658. https://doi.org/10.1038/nature06663
  238. Wang KX, Denhardt DT (2008) Osteopontin: role in immune regulation and stress responses. Cytokine Growth Factor Rev 19: 333–345. https://doi.org/10.1016/j.cytogfr.2008.08.001
  239. Sozzani S (2005) Dendritic cell trafficking: more than just chemokines. Cytokine Growth Factor Rev 16: 581–592. https://doi.org/10.1016/j.cytogfr.2005.04.008
  240. Tiberio L, Del Prete A, Schioppa T, Sozio F, Bosisio D, Sozzani S (2018) Chemokine and chemotactic signals in dendritic cell migration. Cell Mol Immunol 15: 346–352. https://doi.org/10.1038/s41423-018-0005-3
  241. Shao Z, Morser J, Leung LLK (2014) Thrombin cleavage of osteopontin disrupts a pro-chemotactic sequence for dendritic cells, which is compensated by the release of its pro-chemotactic C-terminal fragment. J Biol Chem 289: 27146–27158. https://doi.org/10.1074/jbc.M114.572172
  242. Cui G, Chen J, Wu Z, Huang H, Wang L, Liang Y, Zeng P, Yang J, Uede T, Diao H (2019) Thrombin cleavage of osteopontin controls activation of hepatic stellate cells and is essential for liver fibrogenesis. J Cell Physiol 234: 8988–8997. https://doi.org/10.1002/jcp.27571
  243. López ML, Soriano-Sarabia N, Bruges G, Marquez ME, Preissner KT, Schmitz ML, Hackstein H (2014) Expression pattern of protease activated receptors in lymphoid cells. Cell Immunol 288: 47–52. https://doi.org/10.1016/j.cellimm.2014.02.004
  244. Naldini A, Carney DH, Bocci V, Klimpel KD, Asuncion M, Soares LE, Klimpel GR (1993) Thrombin enhances T cell proliferative responses and cytokine production. Cell Immunol 147: 367–377. https://doi.org/10.1006/cimm.1993.1076
  245. The Role of the Thrombin/PAR Axis in the Anti-tumor CD8+ T Cell Response Following Immune Checkpoint Inhibition Therapy. In: ISTH Congress Abstracts. https://abstracts.isth. org/abstract/the-role-of-the-thrombin-par-axis-in-the-anti-tumor-cd8-t-cell-response-following-immune-checkpoint-inhibition-therapy. Accessed 1 Aug 2023.
  246. Tiper IV, East JE, Subrahmanyam PB, Webb TJ (2016) Sphingosine 1-phosphate signaling impacts lymphocyte migration, inflammation and infection. Pathog Dis 74: ftw063. https://doi.org/10.1093/femspd/ftw063
  247. Ledgerwood LG, Lal G, Zhang N, Garin A, Esses SJ, Ginhoux F, Merad M, Peche H, Lira SA, Ding Y, Yang Y, He X, Schuchman EH, Allende ML, Ochando JC, Bromberg JS (2008) The sphingosine 1-phosphate receptor 1 causes tissue retention by inhibiting the entry of peripheral tissue T lymphocytes into afferent lymphatics. Nat Immunol 9: 42–53. https://doi.org/10.1038/ni1534
  248. Liu G, Burns S, Huang G, Boyd K, Proia RL, Flavell RA, Chi H (2009) The receptor S1P1 overrides regulatory T cell-mediated immune suppression through Akt-mTOR. Nat Immunol 10: 769–777. https://doi.org/10.1038/ni.1743

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (601KB)
3.

Жүктеу (1MB)

© Э.А. Старикова, Дж.Т. Маммедова, О.Я. Порембская, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>