Influence of NO Synthase Inhibitors on Serotonin Release in the Medial Prefrontal Cortex during the Formation and Generalization of the Conditioned Fear Response in Rats

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Serotonergic and nitrergic systems of the medial prefrontal cortex (mPFC) are involved in the control of fear generalization, but their local interaction during this function has been little studied. The aim of the work was to study the effect of blockade of endogenous nitrergic signals on serotonin release in the mPFC during the acquisition of a conditioned fear response (CFR – a fear model) and on the dynamics of its generalization. In male Sprague-Dawley rats using intracranial microdialysis in vivo and high-performance liquid chromatography with electrochemical detection, we found that the intra-mPFC infusion through the dialysis probe of the NO synthase inhibitor N-ω-nitro-L-arginine (NA, 0.5 mM) and selective neuronal NO synthase inhibitor N-ω-propyl-L-arginine (NPLA, 2mM) decreased the basal level of extracellular serotonin in the mPFC and reduced its rise, caused by the CFR acquisition (a paired presentation of a conditioned cue (CS+) and inescapable footshock). The intra-mPFC infusion of NA and NPLA increased animals’ freezing to a differential cue (CS–) not associated with footshock, during the first test, carried out 70 minutes after the CFR acquisition, but reduced it during repeated testing a day after the infusion, without changing freezing of the same animals to the potentially dangerous CS+. The data obtained indicate the involvement of endogenous NO in the activation of serotonin release in the mPFC, caused by the CFR acquisition. In addition, they show that the blockade of endogenous nitrergic signals of the mPFC, which enhances the initial generalization of the fear reaction, contributes to the extinction of the generalized fear, possibly due to inhibition of the serotonin release in the mPFC.

Sobre autores

N. Saulskaya

Pavlov Institute of Physiology, Russian Academy of Sciences

Autor responsável pela correspondência
Email: saulskayanb@infran.ru
Russia, Saint Petersburg

M. Susorova

Pavlov Institute of Physiology, Russian Academy of Sciences

Email: saulskayanb@infran.ru
Russia, Saint Petersburg

N. Trofimova

Pavlov Institute of Physiology, Russian Academy of Sciences

Email: saulskayanb@infran.ru
Russia, Saint Petersburg

Bibliografia

  1. Mercurio S, Bozzo M, Pennati A, Candiani S, Pennati R (2023) Serotonin receptors and their involvement in melanization of sensory cells in Ciona Intestinalis. 12: 1150. https://doi.org/10.3390/cells12081150
  2. Rao STRB, Turek I, Irving HR (2023) Phylogenetic analysis of 5-hydroxytryptamine 3 (5-HT3) receptors in Metazoa. PloS One 18(3): e0281507. https://doi.org/10.1371/journal.pone.028150
  3. Okaty BW, Commons KG, Dymecki SM (2019) Embracing diversity in the 5-HT neuronal system. Nature Reviews Neurosci 20: 395–424. https://doi.org/10.1038/s41583-019-0151-3
  4. Prouty EW, Chandler DJ, Waterhouse BD (2017) Neurochemical differences between target-specific populations of rat dorsal raphe projection neurons. Brain Res 1675: 27–40. https://doi.org/10.1016/j.brainres.2017.08.031
  5. Ren J, Friedmann D, Xiong J, Liu CD, Ferguson BR, Weerakkody T, DeLoach KE, Ran C, Pun A, Sun Y, Weissbourd B, Neve RL, Huguenard J, Horowitz MA, Luo L (2018) Anatomically defined and functionally distinct dorsal raphe serotonin sub-systems. Cell 175: 472–487.e20. https://doi.org/10.1016/j.cell.2018.07.043
  6. Vasudeva RK, Lin RCS, Simpson KL, Waterhouse BD (2011) Functional organization of the dorsal raphe efferent system with special consideration of nitrergic cell groups. J Chem Neuroanat 41: 281–293. https://doi.org/10.1016/j.jchemneu.2011.05.008
  7. Bauer EP (2015) Serotonin in fear conditioning processes. Beh Brain Res 277: 68–77. https://doi.org/10.1016/j.bbr.2014.07.028
  8. Asok A, Kandel ER, Rayman JB (2019) The neurobiology of fear generalization. Front Behav Neurosci 12: 329. https://doi.org/10.3389/fnbeh.2018.00329
  9. Saulskaya NB, Marchuk OE (2020) Inhibition of serotonin reuptake in the medial prefrontal cortex during acquisition of a conditioned reflex fear reaction promotes formation of generalized fear. Neurosci Behav Physiol 50: 432–438. https://doi.org/10.1007/s11055-020-00918-x
  10. Morrey RA, Dunsmoor JE, Haswell CC, Brown VM, Vora A, Weiner J, Stjepanovic D, Wagner HR (2015) Fear learning circuitry is biased toward generalization of fear associations in posttraumatic stress disorders. Transl Psychiatry 5: e700. https://doi.org/10.1038/tp.2015.196
  11. Xu W, Sudhof TC (2013) A neural circuit for memory specificity and generalization. Science 339: 1290–1295. https://doi.org/10.1126/science.1229534
  12. Ghasemi M, Claunch J, Niu K (2019) Pathologic role of nitrergic neurotransmission in mood disorders. Prog Neurobiol 173: 54–87. https://doi.org/10.1016/j.pneurobio.2018.06.002
  13. Sun N, Qin Y-J, Chu C, Xia T, Du Z-W, Zheng L-P, Li A-A, Meng F, Zhang Y, Zhang J, Liu X, Li T-Y, Zhu D-Y, Zhou Q-G (2022) Design of fast-onset antidepressant by dissociating SERT from nNOS in the DRN. Science 378: 390–398. https://doi.org/10.3389/fnbeh.2018.00329
  14. Saulskaya NB, Burmakina MA, Trofimova NA (2022) Effect of activation and blockade of nitrergic neurotransmission on serotonin system activity of the rat medial prefrontal cortex. J Evol Biochem Physiol 58: 500–507. https://doi.org/10.1134/S0022093022020181
  15. Saulskaya NB, Burmakina MA, Trofimova NA (2021) Nitric oxide inhibits the functional activation of the medial prefrontal cortex serotonin system during fear formation and decreases fear generalization. Neurochem J 15: 266–272. https://doi.org/10.1134/s1819712421030107
  16. Sun N, You Y, Yang D, Jiang Z-X, Xia T, Zhou Q-G, Zhu D-Y (2021) Neuronal nitric oxide synthase in dorsal raphe nucleus mediates PTSD-like behaviors induced by single-prolonged stress through inhibiting serotonergic neurons activity. Biochem Biophys Res Communicat 585: 139e145. https://doi.org/10.1016/j.bbrc.2021.11.048
  17. Saul’skaya NB, Sudorgina PV (2016) Activity of the nitrergic system of the medial prefrontal cortex in rats with high and low levels of generalization of a conditioned reflex fear reaction. Neurosci Behav Physiol 46: 964–970. https://doi.org/10.1007/s11055-016-0338-2
  18. Zhou QG, Zhu XH, Nemes AD, Zhu DY (2018) Neuronal nitric oxide synthase and affective disorders. IBRO Rep 5: 116–132. https://doi.org/10.1016/j.ibror.2018.11.004
  19. Campos AC, Piorino EM, Ferreira FR, Guimaraes FS (2013) Increased nitric oxide-mediated neurotransmission in the medial prefrontal cortex is associated with the long lasting anxiogenic-like effect of predator exposure. Behav Brain Res 256: 391–397. https://doi.org/10.1016/j.bbr.2013.08.006
  20. Villa-Verde C, Marinho ALZ, Lisboa SF, Guimaraes FS (2016) Nitric oxide in the prelimbic medial prefrontal cortex is involved in the anxiogenic-like effect induced by acute restraint stress in rats. Neuroscience 320: 30–42. https://doi.org/10.1016/j.neuroscience.2016.01.040
  21. Noriega-Prieto JA, Maglio LE, Gallero-Salas Y, de Sevilla DF (2019) Nitric oxide-dependent LTD at infralimbic cortex. Neuroscience 418: 149–156. https://doi.org/10.1016/j.neuroscience.2019.08.029
  22. Саульская НБ (2018) Генерализация страха в моделях на животных: нейрофизиологические механизмы и возможные мишени коррекции. Успехи физиол наук 49: 12-29. [Saulskaya NB (2018) Fear generalization in animal models: neurophysiological mechanisms and possible targets for correction. Uspekhi fiziol nauk 49: 12–29. (In Russ)]. https://doi.org/10.7868/S0301179818040021
  23. Sadeghi MA, Hemmati S, Nassireslami E, Zoshk MY, Hosseini Y, Abbasian K, Chamanara M (2022) Targeting neuronal nitric oxide synthase and the nitrergic system in post‑traumatic stress disorder. Psychopharmacology 239: 3057–3082. https://doi.org/10.1007/s00213-022-06212-7
  24. Bayer H, Bertoglio LJ (2020) Infralimbic cortex controls fear memory generalization and susceptibility to extinction during consolidation. Scient Rep 10: 15827. https://doi.org/10.1038/s41598-020-72856-0
  25. Vieira PA, Corches A, Lovelace JW, Westbrook KB, Mendoza M, Korzus E (2015) Prefrontal NMDA receptors expressed in excitatory neurons control fear discrimination and fear extinction. Neurobiol Learn and Memory 119: 52–62. https://doi.org/10.1016/j.nlm.2014.12.012
  26. Vanvossen AC, Portes MAM, Scoz-Silva R, Reichmann HB, Stern CAJ, Bertoglio LJ (2017) Newly acquired and reactivated contextual fear memories are more intense and prone to generalize after activation of prelimbic cortex NMDA receptors. Neurobiol Learn Mem 137: 154–162. https://doi.org/10.1016/j.nlm.2016.12.002
  27. Brivio P, Gallo MT, Karel P, Cogi G, Fumagalli F, Homberg JR, Calabrese F (2022) Alterations of mitochondrial dynamics in serotonin transporter knockout rats: A possible role in the fear extinction recall mechanisms. Front Behav Neurosci 16: 957702. https://doi.org/10.3389/fnbeh.2022.957702
  28. Sayed N, Baskaran P, Ma X, van den Akker F, Beuve A. (2007) Desensitization of soluble guanylyl cyclase, the NO receptor, by S-nitrosylation. Proc Natl Acad Sci U S A 104: 12312–12317. https://doi.org/10.1073/pnas.0703944104
  29. Smith JCE, Whitton PS (2000) Nitric oxide modulates N-methyl-d-aspartate-evoked serotonin release in the raphe nuclei and frontal cortex of the freely moving rat. Neurosci Letters 29: 5–8.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (53KB)
3.

Baixar (121KB)
4.

Baixar (115KB)
5.

Baixar (52KB)
6.

Baixar (47KB)
7.

Baixar (72KB)

Declaração de direitos autorais © Н.Б. Саульская, М.А. Сусорова, Н.А. Трофимова, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies