Effect of Neurohypophyseal Hormones on Excretion of Proteins by the Kidneys

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Vasopressin (VP) is one of the main factors affecting intraglomerular hemodynamics, filtration pressure and the state of mesangial cells and contributing to the progression of proteinuria. The aim of this work was to study the effect of neurohypophyseal hormones (VP and oxytocin) on urinary protein excretion. Experiments were performed on Wistar rats, healthy and with microalbuminuria caused by minimal damage to the glomerular filter. Microalbuminuria was modeled by administration of D-nitroarginine methyl ester (D-NAME, 50 mg/kg, intraperitoneally). VP (0.05 and 1.5 nmol/kg) and oxytocin (0.15 nmol/kg) were administered to rats intramuscularly, V2-antagonist (15 nmol/kg) and V1a-antagonist (20 nmol/kg) intraperitoneally. To reduce the level of endogenous VP, animals were given water to drink (10 ml/kg), urine was collected for 2 h, and the levels of total protein, albumin, β2-microglobulin, and immunoglobulin G (IgG) were analyzed. In healthy rats, VP at a dose of 0.05 nmol/kg and oxytocin did not affect albumin excretion, but VP at a dose of 1.5 nmol/kg provoked microalbuminuria. In a model of impaired properties of the glomerular filter caused by the D-NAME administration, VP at a dose of 0.05 nmol/kg and oxytocin led to the normalization of albumin excretion, and VP at a dose of 1.5 nmol/kg caused pronounced proteinuria, albumin excretion increased by 100 times, IgG – by 10 times. Blockade of V2 receptors aggravated protein loss caused by D-NAME and VP (1.5 nmol/kg), while blockade of V1a receptors prevented it. Thus, at high concentrations in the blood, VP enhances protein filtration in the kidney. This effect is mediated by V1a receptors and, depending on the barrier properties of the glomerular filter, leads to the development of microalbuminuria or severe proteinuria. Oxytocin and VP at a dose at which it predominantly activates V2 receptors have an antiproteinuric effect. The revealed effects of neurohypophyseal hormones on albumin excretion open up new promising therapeutic targets for the correction of glomerular dysfunctions.

Негізгі сөздер

Авторлар туралы

T. Karavashkina

Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

Email: kutina_anna@mail.ru
Russia, St. Petersburg

E. Balbotkina

Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

Email: kutina_anna@mail.ru
Russia, St. Petersburg

T. Kovaleva

Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

Email: kutina_anna@mail.ru
Russia, St. Petersburg

A. Kutina

Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: kutina_anna@mail.ru
Russia, St. Petersburg

Әдебиет тізімі

  1. Ballermann BJ, Nystrom J, Haraldsson B (2021) The glomerular endothelium restricts albumin filtration. Front Med (Lausanne) 8: 766689. https://doi.org/10.3389/fmed.2021.766689
  2. Daehn IS, Duffield JS (2021) The glomerular filtration barrier: a structural target for novel kidney therapies. Nat Rev Drug Discov 20(10): 770–788. https://doi.org/10.1038/s41573-021-00242-0
  3. Добронравов ВА, Смирнов АВ, Каюков ИГ (2009) Многогранная альбуминурия: аспекты клинического значения. Нефрология 13(3): 33–39. [Dobronravov VA, Smirnov AV, Kayukov IG (2009) Manysided albuminuria: aspects of clinical value. Nefrologiya 13(3): 33–39. (In Russ)].
  4. Шишкин АН, Лындина МЛ (2009) Эндотелиальная дисфункция, метаболический синдром и микроальбуминурия. Нефрология 13(3): 24–32. [Shishkin AN, Lyndina ML (2009) Endothelial dysfunction, metabolic syndrome and microalbuminuria. Nefrologiya 13(3): 24–32. (In Russ)].
  5. Velho G, Bouby N, Hadjadj S, Matallah N, Mohammedi K, Fumeron F, Potier L, Bellili-Munoz N, Taveau C, Alhenc-Gelas F, Bankir L, Marre M, Roussel R (2013) Plasma copeptin and renal outcomes in patients with type 2 diabetes and albuminuria. Diabetes Care 36(11): 3639–3645. https://doi.org/10.2337/dc13-0683
  6. Bardoux P, Martin H, Ahloulay M, Schmitt F, Bouby N, Trinh-Trang-Tan MM, Bankir L (1999) Vasopressin contributes to hyperfiltration, albuminuria, and renal hypertrophy in diabetes mellitus: study in vasopressin-deficient Brattleboro rats. Proc Natl Acad Sci U S A 96(18): 10397–10402. https://doi.org/10.1073/pnas.96.18.10397
  7. Bouby N, Hassler C, Bankir L (1999) Contribution of vasopressin to progression of chronic renal failure: study in Brattleboro rats. Life Sci 65(10): 991–1004. https://doi.org/10.1016/s0024-3205(99)00330-6
  8. Bankir L, Bardoux P, Ahloulay M (2001) Vasopressin and diabetes mellitus. Nephron 87(1): 8–18. https://doi.org/10.1159/000045879
  9. Кутина АВ, Наточин ЮВ (2008) Аналоги вазотоцина усиливают экскрецию белков почкой крыс. Рос физиол журн им ИМ Сеченова 94(11): 1325–1334. [Kutina AV, Natochin IuV (2008) Vasotocin analogues increase protein excretion by the rat kidney. Russ J Physiol 94(11): 1325–1334. (In Russ)].
  10. Сивак КВ, Забродская ЯА, Добровольская ОА (2019) Апробация метода электрофоретического разделения и идентификации некоторых белков мочи у крыс при токсической нефропатии. Мед акад журн 19(3): 71–82. [Sivak KV, Zabrodskaya YA, Dobrovolskaya OA (2019) Approval of the method of electrophoretic separation and identification of some urine proteins in rats with toxic nephropathy. Med akad zhurn 19(3): 71–82. (In Russ)]. https://doi.org/10.17816/MAJ19371-82
  11. Kutina AV, Golosova DV, Marina AS, Shakhmatova EI, Natochin YV (2016) Role of vasopressin in the regulation of renal sodium excretion: interaction with glucagon-like peptide-1. J Neuroendocrinol 28(4): 1–8. https://doi.org/10.1111/jne.12367
  12. Kutina AV, Makashov AA, Balbotkina EV, Karavashkina TA, Natochin YV (2020) Subtypes of neurohypophyseal nonapeptide receptors and their functions in rat kidneys. Acta Naturae 12(1): 73–83. https://doi.org/10.32607/actanaturae.10943
  13. Kutina AV, Shakhmatova EI, Natochin YuV (2010) Effect of a blocker of nitric oxide production on albumin excretion by rat kidney. Bull Exp Biol Med 150(6): 693–695. https://doi.org/10.1007/s10517-011-1225-z
  14. Ivanova LN (2012) Vasopressin: molecular mechanisms of its antidiuretic effect. Neurosci Behav Physiol 42(7): 661–677. https://doi.org/10.1007/s11055-012-9618-7
  15. Enhörning S, Bankir L, Bouby N, Struck J, Hedblad B, Persson M, Morgenthaler NG, Nilsson PM, Melander O (2013) Copeptin, a marker of vasopressin, in abdominal obesity, diabetes and microalbuminuria: the prospective Malmö Diet and Cancer Study cardiovascular cohort. Int J Obes (Lond) 37(4): 598–603. https://doi.org/10.1038/ijo.2012.88
  16. Lang F, Guelinckx I, Lemetais G, Melander O (2017) Two liters a day keep the doctor away? Considerations on the pathophysiology of suboptimal fluid intake in the common population. Kidney Blood Press Res 42(3): 483–494. https://doi.org/10.1159/000479640
  17. Meijer E, Bakker SJ, Halbesma N, de Jong PE, Struck J, Gansevoort RT (2010) Copeptin, a surrogate marker of vasopressin, is associated with microalbuminuria in a large population cohort. Kidney Int 77(1): 29–36. https://doi.org/10.1038/ki.2009.397
  18. Student J, Sowers J, Lockette W (2022) Thirsty for fructose: arginine vasopressin, fructose, and the pathogenesis of metabolic and renal disease. Front Cardiovasc Med 9: 883365. https://doi.org/10.3389/fcvm.2022.883365
  19. El Boustany R, Tasevska I, Meijer E, Kieneker LM, Enhörning S, Lefevre G, Mohammedi K, Marre M, Fumeron F, Balkau B, Bouby N, Bankir L, Bakker SJ, Roussel R, Melander O, Gansevoort RT, Velho G (2018) Plasma copeptin and chronic kidney disease risk in 3 European cohorts from the general population. JCI Insight 3(13): e121479. https://doi.org/10.1172/jci.insight.121479
  20. Clark WF, Sontrop JM, Huang SH, Gallo K, Moist L, House AA, Cuerden MS, Weir MA, Bagga A, Brimble S, Burke A, Muirhead N, Pandeya S, Garg AX (2018) Effect of coaching to increase water intake on kidney function decline in adults with chronic kidney disease: The CKD WIT randomized clinical trial. JAMA 319(18): 1870–1879. https://doi.org/10.1001/jama.2018.4930
  21. Natochin YV, Golosova DV, Shakhmatova EI (2018) A new functional role of oxytocin: participation in osmoregulation. Dokl Biol Sci 479(1): 60–63. https://doi.org/10.1134/S0012496618020096
  22. Trinder D, Phillips PA, Stephenson JM, Risvanis J, Aminian A, Adam W, Cooper M, Johnston CI (1994) Vasopressin V1 and V2 receptors in diabetes mellitus. Am J Physiol 266(2 Pt 1): E217–E223. https://doi.org/10.1152/ajpendo.1994.266.2.E217
  23. Edwards RM, Trizna W, Kinter LB (1989) Renal microvascular effects of vasopressin and vasopressin antagonists. Am J Physiol 256(2 Pt 2): F274–F278. https://doi.org/10.1152/ajprenal.1989.256.2.F274
  24. Briner VA, Tsai P, Choong HL, Schrier RW (1992) Comparative effects of arginine vasopressin and oxytocin in cell culture systems. Am J Physiol 263(2 Pt 2): F222–F227. https://doi.org/10.1152/ajprenal.1992.263.2.F222
  25. Nishikawa T, Omura M, Iizuka T, Saito I, Yoshida S (1996) Short-term clinical trial of 1-(1-[4-(3-acetylaminopropoxy)-benzoyl]-4-piperidyl)-3, 4-dihydro-2(1H)-quinolinone in patients with diabetic nephropathy. Possible effectiveness of the specific vasopressin V1 receptor antagonist for reducing albuminuria in patients with non-insulin dependent diabetes mellitus. Arzneimittelforschung 46(9): 875–878.
  26. Okada H, Suzuki H, Kanno Y, Saruta T (1995) Effects of novel, nonpeptide vasopressin antagonists on progressive nephrosclerosis in rats. J Cardiovasc Pharmacol 25(5): 847–852. https://doi.org/10.1097/00005344-199505000-00023
  27. Okada H, Suzuki H, Kanno Y, Saruta T (1996) Evidence for the involvement of vasopressin in the pathophysiology of adriamycin-induced nephropathy in rats. Nephron 72(4): 667–672. https://doi.org/10.1159/000188957
  28. Perico N, Zoja C, Corna D, Rottoli D, Gaspari F, Haskell L, Remuzzi G (2009) V1/V2 Vasopressin receptor antagonism potentiates the renoprotection of renin-angiotensin system inhibition in rats with renal mass reduction. Kidney Int 76(9): 960–967. https://doi.org/10.1038/ki.2009.267
  29. Bardoux P, Bichet DG, Martin H, Gallois Y, Marre M, Arthus MF, Lonergan M, Ruel N, Bouby N, Bankir L (2003) Vasopressin increases urinary albumin excretion in rats and humans: involvement of V2 receptors and the renin-angiotensin system. Nephrol Dial Transplant 18(3): 497–506. https://doi.org/10.1093/ndt/18.3.497
  30. Bardoux P, Bruneval P, Heudes D, Bouby N, Bankir L (2003) Diabetes-induced albuminuria: role of antidiuretic hormone as revealed by chronic V2 receptor antagonism in rats. Nephrol Dial Transplant 18(9): 1755–1763. https://doi.org/10.1093/ndt/gfg277
  31. Terada Y, Tomita K, Nonoguchi H, Yang T, Marumo F (1993) Different localization and regulation of two types of vasopressin receptor messenger RNA in microdissected rat nephron segments using reverse transcription polymerase chain reaction. J Clin Invest 92(5): 2339–2345. https://doi.org/10.1172/JCI116838
  32. Tagawa T, Imaizumi T, Shiramoto M, Endo T, Hironaga K, Takeshita A (1995) V2 receptor-mediated vasodilation in healthy humans. J Cardiovasc Pharmacol 25(3): 387–392. https://doi.org/10.1097/00005344-199503000-00006
  33. Loichot C, Krieger JP, De Jong W, Nisato D, Imbs JL, Barthelmebs M (2001) High concentrations of oxytocin cause vasoconstriction by activating vasopressin V1A receptors in the isolated perfused rat kidney. Naunyn Schmiedebergs Arch Pharmacol 363(4): 369–375. https://doi.org/10.1007/s002100000372
  34. Elberry AA, Refaie SM, Kamel M, Ali T, Darwish H, Ashour O (2013) Oxytocin ameliorates cisplatin-induced nephrotoxicity in Wistar rats. Ann Saudi Med 33(1): 57–62. https://doi.org/10.5144/0256-4947.2013.57
  35. Tribollet E, Barberis C, Dreifuss JJ, Jard S (1988) Autoradiographic localization of vasopressin and oxytocin binding sites in rat kidney. Kidney Int 33(5): 959–965. https://doi.org/10.1038/ki.1988.94
  36. Arpin-Bott MP, Waltisperger E, Freund-Mercier MJ, Stoeckel ME (1997) Two oxytocin-binding site subtypes in rat kidney: pharmacological characterization, ontogeny and localization by in vitro and in vivo autoradiography. J Endocrinol 153(1): 49–59. https://doi.org/10.1677/joe.0.1530049
  37. Soares TJ, Coimbra TM, Martins AR, Pereira AG, Carnio EC, Branco LG, Albuquerque-Araujo WI, de Nucci G, Favaretto AL, Gutkowska J, McCann SM, Antunes-Rodrigues J (1999) Atrial natriuretic peptide and oxytocin induce natriuresis by release of cGMP. Proc Natl Acad Sci U S A 96(1): 278–283. https://doi.org/10.1073/pnas.96.1.278

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (163KB)
3.

Жүктеу (254KB)
4.

Жүктеу (185KB)

© Т.А. Каравашкина, Е.В. Балботкина, Т.В. Ковалева, А.В. Кутина, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>