The Na+/K+-ATPase Inhibitor Ouabain Has Different Effects on the Electrophysiological Properties of Excitatory and Inhibitory Neurons in the Entorhinal Cortex E

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Na+/K+-ATPase maintains the neuron’s resting potential and the transmembrane gradient of K+ and Na+ cations, thus regulating ion transport and cellular volume. Mutations in Na+/K+-ATPase genes that impair its function can cause significant impairments in the nervous system function, including the development of epilepsy, if not lethal. Different forms of Na+/K+-ATPase are expressed in various classes of neurons and exhibit different characteristics. Thus, the impaired function of Na+/K+-ATPase may differentially affect the functioning of inhibitory and excitatory neurons. This study aims to determine the effects of the Na+/K+-ATPase antagonist ouabain on the electrophysiological characteristics of pyramidal cells and fast-spiking interneurons, as well as its impact on synaptic transmission. The results indicate that exposure to 5 µM ouabain results in depolarization of the resting membrane potential by 5 mV, as well as decreased amplitude and increased duration of the action potential of pyramidal neurons. Furthermore, ouabain caused a decrease in the amplitude of afterhyperpolarization in fast-spiking i-nterneurons. Moreover, both types of neurons exhibited a decrease in the threshold of action potential generation and the current at which depolarization block occurs. The addition of ouabain did not alter other electrophysiological characteristics of neurons. Furthermore, ouabain rapidly attenuates GABAergic transmission without affecting e-xcitatory synaptic transmission. These new findings on the effects of ouabain on excitatory pyramidal neurons and inhibitory interneurons contribute to the understanding of the mechanism underlying changes in the balance of excitation and inhibition in neural networks under Na+/K+-ATPase function impairment.

作者简介

E. Proskurina

Almazov National Medical Research Centre; Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS

编辑信件的主要联系方式.
Email: elena.yu.proskurina@gmail.com
Russia, Saint Petersburg; Russia, Saint Petersburg

D. Sinyak

Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS

Email: elena.yu.proskurina@gmail.com
Russia, Saint Petersburg

A. Zaitsev

Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS

Email: elena.yu.proskurina@gmail.com
Russia, Saint Petersburg

参考

  1. Pietrini G, Matteoli M, Banker G, Caplan MJ (1992) Isoforms of the Na,K-ATPase are present in both axons and dendrites of hippocampal neurons in culture. Proc Natl Acad Sci U S A 89: 8414–8418. https://doi.org/10.1073/pnas.89.18.8414
  2. Boldyrev AA (1993) Functional activity of Na+, K+-pump in normal and pathological tissues. Mol Chem Neuropathol 19: 83–93. https://doi.org/10.1007/BF03160170
  3. Kaplan JH (2002) Biochemistry of Na,K-ATPase. Annu Rev Biochem 71: 511–535. https://doi.org/10.1146/annurev.biochem.71.102201.141218
  4. Clausen MV, Hilbers F, Poulsen H (2017) The structure and function of the Na,K-ATPase isoforms in health and disease. Front Physiol 8. https://doi.org/10.3389/fphys.2017.00371
  5. Juhaszova M, Blaustein MP (1997) Na+ pump low and high ouabain affinity α subunit isoforms are differently distributed in cells. Proc Natl Acad Sci U S A 94: 1800–1805. https://doi.org/10.1073/pnas.94.5.1800
  6. Berrebi-Bertrand I, Maixent JM, Christe G, Lelièvre LG (1990) Two active Na+/K+-ATPases of high affinity for ouabain in adult rat brain membranes. Biochim Biophys Acta 1021: 148–156. https://doi.org/10.1016/0005-2736(90)90027-l
  7. Zahler R, Zhang Z-T, Manor M, Boron WF (1997) Sodium Kinetics of Na,K-ATPase α Isoforms in Intact Transfected HeLa Cells. J Gen Physiol 110: 201–213. https://doi.org/10.1085/jgp.110.2.201
  8. Crambert G, Hasler U, Beggah AT, Yu C, Modyanov NN, Horisberger JD, Lelièvre L, Geering K (2000) Transport and pharmacological properties of nine different human Na,K-ATPase isozymes. J Biol Chem 275: 1976–1986. https://doi.org/10.1074/jbc.275.3.1976
  9. Dobretsov M, Hayar A, Kockara NT, Kozhemyakin M, Light KE, Patyal P, Pierce DR, Wight PA (2019) A Transgenic Mouse Model to Selectively Identify α3 Na,K-ATPase Expressing Cells in the Nervous System. Neuroscience 398: 274–294. https://doi.org/10.1016/j.neuroscience.2018.07.018
  10. Dobretsov M, Stimers JR (2005) Neuronal function and alpha3 isoform of the Na/K-ATPase. Front Biosci 10: 2373–2396. https://doi.org/10.2741/1704
  11. Vanmolkot KRJ, Kors EE, Hottenga J-J, Terwindt GM, Haan J, Hoefnagels WAJ, Black DF, Sandkuijl LA, Frants RR, Ferrari MD, Ferrari MD, Van den Maagdenberg AMJM (2003) Novel mutations in the Na+,K+-ATPase pump gene ATP1A2 associated with familial hemiplegic migraine and benign familial infantile convulsions. Ann Neurol 54: 360–366. https://doi.org/10.1002/ana.10674
  12. Ishihara N, Inagaki H, Miyake M, Kawamura Y, Yoshikawa T, Kurahashi H (2019) A case of early onset life-threatening epilepsy associated with a novel ATP1A3 gene variant. Brain Dev 41: 285–291. https://doi.org/10.1016/j.braindev.2018.10.008
  13. de Lores Arnaiz GR, Ordieres MGL (2014) Brain Na+,K+-ATPase Activity In Aging and Disease. Int J Biomed Sci 10: 85–102.
  14. Clapcote SJ, Duffy S, Xie G, Kirshenbaum G, Bechard AR, Schack VR, Petersen J, Sinai L, Saab BJ, Lerch JP, Vilsen B, Roder JC (2009) Mutation I810N in the α3 isoform of Na+,K +-ATPase causes impairments in the sodium pump and hyperexcitability in the CNS. Proc Natl Acad Sci U S A 106: 14085–14090. https://doi.org/10.1073/pnas.0904817106
  15. Anderson TR, Huguenard JR, Prince DA (2010) Differential effects of Na+-K+-ATPase blockade on cortical layer V neurons. J Physiol 588: 4401–4414. https://doi.org/10.1113/jphysiol.2010.191858
  16. Zhang D, Hou Q, Wang M, Lin A, Jarzylo L, Navis A, Raissi A, Liu F, Man H-Y (2009) Na,K-ATPase activity regulates AMPA receptor turnover through proteasome-mediated proteolysis. J Neurosci 29: 4498–4511. https://doi.org/10.1523/JNEUROSCI.6094-08.2009
  17. Proskurina EY, Zaitsev AV (2021) Photostimulation activates fast-spiking interneurons and pyramidal cells in the entorhinal cortex of Thy1-ChR2-YFP line 18 mice. Biochem Biophys Res Commun 580: 87–92. https://doi.org/10.1016/j.bbrc.2021.10.002
  18. Smirnova EY, Amakhin DV, Malkin SL, Chizhov AV, Zaitsev AV (2018) Acute Changes in Electrophysiological Properties of Cortical Regular-Spiking Cells Following Seizures in a Rat Lithium–Pilocarpine Model. Neuroscience 379: 202–215. https://doi.org/10.1016/j.neuroscience.2018.03.020
  19. Therien AG, Blostein R (2000) Mechanisms of sodium pump regulation. Am J Physiol Cell Physiol 279. https://doi.org/10.1152/ajpcell.2000.279.3.c541
  20. Silva E, Soares-da-Silva P (2012) New insights into the regulation of Na+,K+-ATPase by ouabain. Int Rev Cell Mol Biol 294: 99–132. https://doi.org/10.1016/B978-0-12-394305-7.00002-1
  21. Jiao S, Johnson K, Moreno C, Yano S, Holmgren M (2022) Comparative description of the mRNA expression profile of Na+/K+-ATPase isoforms in adult mouse nervous system. J Compar Neurol 530: 627–647. https://doi.org/10.1002/cne.25234
  22. Richards KS, Bommert K, Szabo G, Miles R (2007) Differential expression of Na+/K+-ATPase alpha-subunits in mouse hippocampal interneurones and pyramidal cells. J Physiol 585: 491–505. https://doi.org/10.1113/jphysiol.2007.144733
  23. Murata K, Kinoshita T, Ishikawa T, Kuroda K, Hoshi M, Fukazawa Y (2020) Region- and neuronal-subtype-specific expression of Na,K-ATPase alpha and beta subunit isoforms in the mouse brain. J Comp Neurol 528: 2654–2678. https://doi.org/10.1002/cne.24924
  24. Hu H, Gan J, Jonas P (2014) Interneurons. Fast-spiking, parvalbumin+ GABAergic interneurons: from cellular design to microcircuit function. Science 345: 1255263. https://doi.org/10.1126/science.1255263
  25. Zaitsev AV, Povysheva NV, Gonzalez-Burgos G, Rotaru D, Fish KN, Krimer LS, Lewis DA (2009) Interneuron Diversity in Layers 2–3 of Monkey Prefrontal Cortex. Cerebr Cortex 19: 1597–1615. https://doi.org/10.1093/cercor/bhn198
  26. Proskurina EY, Chizhov AV, Zaitsev AV (2022) Optogenetic Low-Frequency Stimulation of Principal Neurons, but Not Parvalbumin-Positive Interneurons, Prevents Generation of Ictal Discharges in Rodent Entorhinal Cortex in an In Vitro 4-Aminopyridine Model. Int J Mol Sci 24: 195. https://doi.org/10.3390/ijms24010195
  27. McCarren M, Alger BE (1987) Sodium-potassium pump inhibitors increase neuronal excitability in the rat hippocampal slice: Role of a Ca2+-dependent conductance. J Neurophysiol 57: 496–509. https://doi.org/10.1152/jn.1987.57.2.496
  28. Pivovarov AS, Calahorro F, Walker RJ (2018) Na+/K+-pump and neurotransmitter membrane receptors. Invert Neurosci 19: 1. https://doi.org/10.1007/s10158-018-0221-7
  29. Blaustein MP, Juhaszova M, Golovina VA, Church PJ, Stanley EF (2002) Na/Ca exchanger and PMCA localization in neurons and astrocytes: functional implications. Ann N Y Acad Sci 976: 356–366. https://doi.org/10.1111/j.1749-6632.2002.tb04762.x
  30. Sudhof TC (2004) The synaptic vesicle cycle. Annu Rev Neurosci 27: 509–547. https://doi.org/10.1146/annurev.neuro.26.041002.131412
  31. Chizhov AV, Zefirov AV, Amakhin DV, Smirnova EYu, Zaitsev AV (2018) Minimal model of interictal and ictal discharges “Epileptor-2.” PLoS Comput Biol 14: e1006186. https://doi.org/10.1371/journal.pcbi.1006186

补充文件

附件文件
动作
1. JATS XML
2.

下载 (211KB)
3.

下载 (489KB)
4.

下载 (328KB)
5.

下载 (253KB)

版权所有 © Е.Ю. Проскурина, Д.С. Синяк, А.В. Зайцев, 2023

##common.cookie##