Functional State of the Mesenteric Arteries and Vessels of the Skin Microcirculation Bed in Rats with Experimental Kidney Dysfunction

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Chronic kidney disease is accompanied by cardiovascular complications, including endothelial dysfunction, arterial hypertension, and atherosclerosis. The aim of this work is to compare the reactivity of the vessels of the microcirculatory bed (MCR) of the skin, assessed by laser Doppler flowmetry (LDF) and mesenteric arteries in rats with resection of 5/6 of the mass of the kidneys, and to evaluate the possibility of using LDF analysis as a method that reflects the functional state of large resistive vessels. Wistar rats were divided into two groups: animals of the NE-group (n = 15) had 5/6 of the mass of kidney tissue removed, control animals of the SO-group (n = 15) underwent a sham operation. After 8 weeks, the reactivity of rat skin microvessels to acetylcholine (ACh) and sodium nitroprusside (NP) iontophoresis was assessed. A week later, in rats, the effect of NE on the reactivity of mesenteric arteries preconstricted with phenylephrine was evaluated in vivo using microphotographic and video recording of the diameter. It has been shown that NE does not affect the average value of perfusion in the skin of rats at rest, however, it changes the structure of the frequency range of the spectrum of fluctuations in the MCR index, increasing the value of endothelial, neurogenic, and myogenic tone. NE led to the development of endothelial dysfunction of the mesenteric arteries and MCR vessels of the skin, which was expressed in a decrease in vascular reactivity to the action of endothelium-dependent (ACh) and endothelium-independent (NP) vasodilators. Thus, the development of experimental kidney dysfunction led to changes in the spectral components of fluctuations in the MCR index in the skin, indicating an increase in tonic effects of various genesis on the vessels. NE was accompanied by a decrease in the reactivity of microvessels of the skin and mesenteric arteries, however, there was no correlation between an increase in the MCR index and dilatation of the mesenteric arteries under the action of vasodilator agonists.

Sobre autores

G. Ivanova

Pavlov Institute of Physiology of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: ivanovagt@infran.ru
Russia, St. Petersburg

O. Beresneva

First Pavlov Saint-Petersburg State Medical University

Email: ivanovagt@infran.ru
Russia, St. Petersburg

Bibliografia

  1. Webster AC, Nagler EV, Morton RL, Masson P (2017) Chronic kidney disease. Lancet 389: 1238–1252. https://doi.org/10.1016/S0140-6736(16)32064-5
  2. Di Angelantonio E, Danesh J, Eiriksdottir G, Gudnason V (2007) Renal function and risk of coronary heart disease in general populations: new prospective study and systematic review. PLoS Med 4: e270. https://doi.org/10.1371/journal.pmed.0040270
  3. Tyralla K, Amann K (2003) Morphology of the heart and arteries in renal failure. Kidney Int 63(Suppl. 84): 80–85. https://doi.org/10.1046/j.1523-1755.63.s84.1.x
  4. Düsing P, Zietzer A, Goody PR, Hosen MR, Kurts C, Nickenig G, Jansen F (2021) Vascular pathologies in chronic kidney disease: pathophysiological mechanisms and novel therapeutic approaches. J Mol Med 99(3): 335–348. https://doi.org/10.1007/s00109-021-02037-7
  5. Seliger SL, Salimi S, Pierre V, Giffuni J, Katzel L, Parsa A (2016) Microvascular endothelial dysfunction is associated with albuminuria and CKD in older adults. BMC Nephrol 17: 82. https://doi.org/10.1186/s12882-016-0303-x
  6. Tonelli M, Muntner P, Lloyd A, Manns BJ, Klarenbach S, Pannu N, James MT, Hemmelgarn BR (2012) Risk of coronary events in people with chronic kidney disease compared with those with diabetes: a population-level cohort study. Lancet 380: 807–814. https://doi.org/10.1016/S0140-6736(12)60572-8
  7. Jankowski J, Floege J, Fliser D, Böhm M, Marx N (2021) Cardiovascular Disease in Chronic Kidney Disease: Pathophysiological Insights and Therapeutic Options. Circulation 143(11): 1157–1172. https://doi.org/10.1161/CIRCULATIONAHA.120.050686
  8. Schiffrin EL, Lipman ML, Mann JFE (2007) Chronic kidney disease: effects on the cardiovascular system. Circulation.116: 85–97. https://doi.org/10.1161/CIRCULATIONAHA.106.678342
  9. Zoccali C, Vanholder R, Massy ZA, Ortiz A, Sarafidis P, Dekker FW, Fliser D, Fouque D, Heine GH, Jager KJ, Kanbay M, Mallamaci F, Parati G, Rossignol P, Wiecek A, London G (2017) The systemic nature of CKD. Nat Rev Nephrol. 13: 344–358. https://doi.org/10.1038/nrneph.2017.52
  10. Batra G, Ghukasyan Lakic T, Lindbäck J, Held C, White HD, Stewart RAH, Koenig W, Cannon CP, Budaj A, Hagström E, Siegbahn A, Wallentin L (2021) STABILITY Investigators Interleukin 6 and Cardiovascular Outcomes in Patients With Chronic Kidney Disease and Chronic Coronary Syndrome. JAMA Cardiol 6(12): 1440–1445. https://doi.org/10.1001/jamacardio.2021.3079
  11. Martens CR, Edwards DG (2011) Peripheral vascular dysfunction in chronic kidney disease. Cardiol Res Pract 2011: 1–9. https://doi.org/10.4061/2011/267257
  12. Düsing P, Zietzer A, Goody PR, Hosen MR, Kurts C, Nickenig G, Jansen F (2021) Vascular pathologies in chronic kidney disease: pathophysiological mechanisms and novel therapeutic approaches. Int J Mol Sci 22(17): 9221. https://doi.org/10.3390/ijms22179221
  13. Schmidt RJ, Baylis C (2000) Total nitric oxide production is low in patients with chronic renal disease. Kidney Int 58: 1261–1266. https://doi.org/10.1046/j.1523-1755.2000.00281.x
  14. Benchetrit S, Green J, Katz D, Bernheim J, Rathaus M (2003) Early endothelial dysfunction, following renal mass reduction in rats. Eur J Clin Invest 33(1): 26–31. https://doi.org/10.1046/j.1365-2362.2003.01102
  15. Amador-Martínez I, Pérez-Villalva R, Uribe N, Cortés-González C, Bobadilla NA, Barrera-Chimal J (2019) Reduced endothelial nitric oxide synthase activation contributes to cardiovascular injury during chronic kidney disease progression. Am J Physiol Renal Physiol 317: F275–F285. https://doi.org/10.1152/ajprenal.00020.2019
  16. Fliser D, Kielstein JT, Haller H, Bode-Borger SM (2003) Asymmetric dimethylarginine: A cardiovascular risk factor in renal disease? Kidney Int 63(Suppl.84): 37–43. https://doi.org/10.1046/j.1523-1755.63.s84.11.x
  17. Mangiacapra F, Conte M, Demartini C, Muller O, Delrue L, Dierickx K, di Sciascio G, Trimarco B, de Bruyne B, Wijns W, Bartunek J, Barbato E (2016) Relationship of asymmetric dimethylarginine (ADMA) with extent and functional severity of coronary atherosclerosis. Int J Cardiol 220: 629–633. https://doi.org/10.1016/j.ijcard.2016.06.254
  18. Zoccali C, Mallamaci F, Tripepi G (2003) Traditional and emerging cardiovascular risk factors in end-stage renal disease. Kidney Int 63(Suppl 85): 105–111. https://doi.org/10.1046/j.1523-1755.63.s85.25.x
  19. Annuk M, Zilmer M, Fellstrom B (2003) Endothelium-dependent vasodilatation and oxidative stress in chronic renal failure: Impact on cardiovascular disease. Kidney Int 63(suppl 84): 50–54. https://doi.org/10.1046/j.1523-1755.63.s84.2.x
  20. Zannad F, Rossignol P (2018) Cardiorenal Syndrome Revisited Circulation 138(9): 929–944. https://doi.org/10.1161/CIRCULATIONAHA.117.028814
  21. Martens RJH, Stehouwer CDA (2017) Assessing microvascular function in humans from a chronic disease perspective. J Am Soc Nephrol 28(12): 3461–3472. https://doi.org/10.1681/ASN.2017020157
  22. Williams J, Gilchrist M, Strain D, Fraser D, Shore A (2020) The systemic microcirculation in dialysis populations. Microcirculation 27(5): e12613. https://doi.org/10.1111/micc.12613
  23. Roustit M, Cracowski JL (2012) Non-invasive assessment of skin microvascular function in humans: an insight into methods. Microcirculation 19: 47–64 https://doi.org/10.1111/j.1549-8719.2011.00129.x
  24. Wei Y, Chen H, Chi Q, He Y, Mu L, Liu C, Lu Y (2021) Synchronized research on endothelial dysfunction and microcirculation structure in dorsal skin of rats with type 2 diabetes mellitus. Med Biol Eng Comput 59(5): 1151–1166. https://doi.org/10.1007/s11517-021-02363-5
  25. Izjerman RG, de Jongh RT, Beijk MA, vanWeissenbruch MM, Delemarre-van de Waal HA, Serne EH, Stehouwer CD (2016) Individuals at increased coronary heart disease risk are characterized by animpaired microvascular function in skin. Eur J ClinInvest 33: 536–542. https://doi.org/10.1046/j.1365-2362.2003.01179.x
  26. Cracowski JL, Roustit M (2016) Current methods to assess human cutaneous blood flow: an updated focus on laser-based-techniques. Microcirculation 23: 337–344. https://doi.org/10.1111/micc.12257
  27. Stewart J, Kohen A, Brouder D, Rahim F, AdlerS, Garrick R, Goligorsky MS (2004) Noninvasiveinterrogation of microvasculature for signs ofendothelial dysfunction in patients with chronic renalfailue. Am J Physiol Heart Circ Physiol 287: H2687–H2696. https://doi.org/10.1152/ajpheart.00287.2004
  28. Lindstedt IH, Edvinsson ML, Edvinsson L (2006) Reduced responsiveness of cutaneous microcirculation in essential hypertension—a pilotstudy. Blood Pressure 15: 275–280. https://doi.org/10.1080/08037050600996586
  29. Wei Y, Chen H, Chi Q, He Y, Mu L, Liu C, Lu Y (2021) Synchronized research on endothelial dysfunction and microcirculation structure in dorsal skin of rats with type 2 diabetes mellitus. Med Biol Eng Comput 59(5): 1151–1166. https://doi.org/10.1007/s11517-021-02363-5
  30. Smogorzewski MJ (2017) Skin Blood Flow and Vascular Endothelium Function in Uremia. J Ren Nutr 27(6): 465–469. PMID: https://doi.org/10.1053/j.jrn.2017.04.01229056167
  31. Paisley KE, Beaman M, Tooke JE, Mohamed-Ali V, Lowe GD, Shore AC (2003) Endothelial dysfunction and inflammation in asymptomatic proteinuria. Kidney Int 63(2): 624–633.https://doi.org/10.1046/j.1523-1755.2003.00768.x12631127
  32. Иванова ГТ, Лобов ГИ, Береснева ОН, Парастаева ММ (2019) Изменение реактивности сосудов крыс с экспериментальным уменьшением массы функционирующих нефронов. Нефрология 23(4): 88–95. [Ivanova GT, Lobov GI, Beresneva ON, Parastaeva MM (2019) Changes in the reactivity of vessels of rats with an experimental decrease in the mass of functioning nephrons Nephrology (Saint-Petersburg) 23(4): 88–95. (In Russ)]).https://doi.org/10.24884/1561-6274-2019-23-4-88-95
  33. Rossi M, Carpi A, Galetta F, Franzoni F, Santoro G (2006) The investigation of skin blood flowmotion: a new approach to study the microcirculatory impairment in vascular diseases? Biomed Pharmacother 60: 437–442. https://doi.org/10.1016/j.biopha.2006.07.012
  34. DuPont JJ, Ramick MG, Farquhar WB, Townsend RR, Edwards DG (2014) NADPH oxidase-derived reactive oxygen species contribute to impaired cutaneous microvascular function in chronic kidney disease. Am J Physiol Renal Physiol 306(12): F1499–F1506.https://doi.org/10.1152/ajprenal.00058.2014
  35. Houben A, Martens RJH, Stehouwer CDA (2017) Assessing microvascular function in humans from a chronic disease perspective. J Am Soc Nephrol 28: 3461–3472. https://doi.org/10.1681/ASN.2017020157
  36. Sriram K, Salazar Vázquez BY, Tsai AG, Cabrales P, Intaglietta M, Tartakovsky DM (2012) Autoregulation and mechanotransduction control the arteriolar response to small changes in hematocrit. Am J Physiol Heart Circ Physiol 303(9): H1096–H1106. https://doi.org/10.1152/ajpheart.00438.2012
  37. Kvandal P, Stefanovska A, Veber M, Kvernmo HD, Kirkebøen KA (2003) Regulation of human cutaneous circulation evaluated by laser Doppler flowmetry, iontophoresis, and spectral analysis: importance of nitric oxide and prostaglandines. Microvasc Res 65(3): 160–171. https://doi.org/10.1016/s0026-2862(03)00006-2
  38. Крупаткин АИ, Сидоров ВВ (2005) Лазерная доплеровская флоуметрия микроциркуляции крови. М. Медицина. [Krupatkin AI, Sidorov VV (2005) Laser Doppler flowmetry of blood microcirculation. М. Medicine-press. (In Russ)].
  39. Drábková N, Hojná S, Zicha J, Vaněčková I (2020) Contribution of selected vasoactive systems to blood pressure regulation in two models of chronic kidney disease. Physiol Res 69(3): 405–414. https://doi.org/10.33549/physiolres.934392
  40. Stefanovska A., Bravik M (1999) Physics of human cardiovascular system. Contemporary Physics 40(1): 31–35.
  41. Houben A, Martens RJH, Stehouwer CDA (2017) Assessing microvascular function in humans from a chronic disease perspective. J Am Soc Nephrol 28: 3461–3472. https://doi.org/10.1681/ASN.2017020157
  42. Stewart JM, Kohen A, Brouder D, Rahim F, Adler S, Garrick R, Goligorsky MS (2004) Noninvasive interrogation of microvasculature for signs of endothelial dysfunction in patients with chronic renal failure. Am J Physiol Heart Circ Physiol 287: H2687–H2696. https://doi.org/10.1152/ajpheart.00287.2004
  43. Kellogg DL Jr, Zhao JL, Coey U, Green JV (2005) Acetylcholine-induced vasodilation is mediated by nitric oxide and prostaglandins in human skin. J Appl Physiol 98: 629–632. https://doi.org/10.1152/japplphysiol.00728.2004
  44. Gaubert ML, Sigaudo-Roussel D, Tartas M, Berrut G, Saumet JL, Fromy B (2007) Endothelium-derived hyperpolarizing factor as an in vivo back-up mechanism in the cutaneous microcirculation in old mice. J Physiol 585(Pt 2): 617–626. https://doi.org/10.1113/jphysiol.2007.143750
  45. Лобов ГИ, Соколова ИБ (2020) Роль NO и H2S в регуляции тонуса церебральных сосудов при хронической болезни почек. Рос физиол журн им ИМ Сеченова 106(8): 1002–1015. [Lobov GI, Sokolova IB (2020) Role of NO and H2S in the Regulation of the Tone of Cerebral Vessels in Chronic Kidney Disease. Russ J Physiol 106(8): 1002–1015. (In Russ)]. https://doi.org/10.31857/S0869813920080063
  46. Freed JK, Gutterman DD (2017) Communication Is Key: Mechanisms of Intercellular Signaling in Vasodilation. J Cardiovasc Pharmacol 69(5): 264–272. https://doi.org/10.1097/FJC.0000000000000463
  47. Chen CH, Huang SC, Yeh EL, Lin PC, Tsai SF, Huang YC (2022) Indoxyl sulfate, homocysteine, and antioxidant capacities in patients at different stages of chronic kidney disease. Nutr Res Pract 16(4): 464–475.https://doi.org/10.4162/nrp.2022.16.4.464
  48. Brunt VE, Fujii N, Minson CT (2015) Endothelialderived hyperpolarization contributes to acetylcholine-mediated vasodilation in human skin in a dose-dependent manner. J Appl Physiol 119: 1015–1022. https://doi.org/10.1152/japplphysiol.00201.201

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (25KB)
3.

Baixar (59KB)
4.

Baixar (33KB)
5.

Baixar (27KB)
6.

Baixar (66KB)

Declaração de direitos autorais © Г.Т. Иванова, О.Н. Береснева, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies