Resistance of Embryonic Chick Atria to Inhibition of HCN-Channels and Components of the “Ca2+-Clock”

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Despite its medical importance, the cellular mechanisms activity and the contribution of various ion channels of embryonic heart automatism are not yet fully understood. In this study we investigated the effects of specific ion-channel inhibitors on the generation of action potentials in pacemaker cells of the right atrium in chicken embryos (HH36). We used microelectrode technique and evaluated the sensitivity of pacemaker cells to ivabradine (inhibitor of HCN-channels, through which the hyperpolarization-activated current, If), ryanodine (agonist of ryanodine receptors) and SN6 (inhibitor of Na+/Ca2+-exchange). It was found that the right atrium cells have a phase of slow diastolic depolarization. However, these cells were not sensitive to ivabradine (3 μM). We did not register significant changes in the electrophysiological parameters of action potentials.When ryanodine (1 μM) and SN6 (10 μM) were added to the perfusion solution, we observed similar effects: spontaneous rate the generation of action potential increased by 15%. Disturbance of rhythmic activity or disruption of the generation of electrical impulses were not observed in right atrial samples of chicken embryos. The obtained results allow us to conclude that, at this of embryonic development stage, HCN4-channels, ryanodine receptors, and the Na+/Ca2+-exchange are not decisive for maintaining the automatism of the right atrial cells in the chick embryo. We assume that the ion currents flowing through these channels are important in electrophysiology in adult animals, but they have a modulating function in the embryonic myocardium.

Авторлар туралы

E. Lebedeva

Institute of Physiology Komi Science Center, Ural Branch Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: lebedeva.physiol.komisc@ya.ru
Russia, Syktyvkar

M. Gonotkov

Institute of Physiology Komi Science Center, Ural Branch Russian Academy of Sciences

Email: lebedeva.physiol.komisc@ya.ru
Russia, Syktyvkar

Әдебиет тізімі

  1. Sedmera D, Kockova R, Vostarek F, Raddatz E (2015) Arrhythmias in the developing heart. Acta Physiol (Oxf) 213 (2):303–320.https://doi.org/10.1111/apha.12418
  2. Brochu RM, Clay JR, Shrier A (1992) Pacemaker current in single cells and in aggregates of cellsdissociated from the embryonic chick heart. J Physiol 454: 503–515. https://doi.org/10.1113/jphysiol.1992.sp019276
  3. Krogh-Madsen T, Schaffer P, Skriver AD, Taylor LK, Pelzmann B, Koidl B, Guevara MR (2005) An ionic model for rhythmic activity in small clusters of embryonic chick ventricular cells. Am J Physiol Heart Circ Physiol 289(1): 398–413. https://doi.org/10.1152/ajpheart.00683.2004
  4. Shepherd N, Graham V, Trevedi B, Creazzo TL (2007) Changes in regulation of sodium/calcium exchanger of avian ventricular heart cells during embryonic development. Am J Physiol Cell Physiol 292(5): 1942–1950. https://doi.org/10.1152/ajpcell.00564.2006
  5. Wang P, Tang M, Gao L, Luo H, Wang G, Ma X, Duan Y (2013) Roles of I(f) and intracellular Ca2+ release in spontaneous activity of ventricular cardiomyocytes during murine embryonic development. J Cell Biochem 114 (8): 1852–1862. https://doi.org/10.1002/jcb.24527
  6. Hescheler J, Fleischmann BK, Lentini S, Maltsev VA, Rohwedel J, Wobus AM, Addicks K (1997) Embryonic stem cells: a model to study structural and functional properties in cardiomyogenesis. Cardiovasc Res 36(2): 149–162. https://doi.org/10.1016/s0008-6363(97)00193-4
  7. Sartiani L, Bettiol E, Stillitano F, Mugelli A, Cerbai E, Jaconi ME (2007) Developmental changes in cardiomyocytes differentiated from human embryonic stem cells: a molecular and electrophysiological approach. Stem Cells 25(5): 1136–1144. https://doi.org/10.1634/stemcells.2006-0466
  8. Barbuti A, Crespi A, Capilupo D, Mazzocchi N, Baruscotti M, DiFrancesco D (2009) Molecular composition and functional properties of f-channels in murine embryonic stem cell-derived pacemaker cells. J Mol Cell Cardiol 46(3): 343–351. https://doi.org/10.1016/j.yjmcc.2008.12.001
  9. Opthof T (2007) Embryological development of pacemaker hierarchy and membrane currents related to the function of the adult sinus node: implications for autonomic modulation of biopacemakers. Med Biol Eng Comput 45(2): 119–132. https://doi.org/10.1007/s11517-006-0138-x.
  10. Goenezen S, Rennie MY, Rugonyi S (2012) Biomechanics of early cardiac development. Biomech Model Mechanobiol 11(8): 1187–1204. https://doi.org/10.1007/s10237-012-0414-7
  11. Polo-Parada L, Zhang X, Modgi A (2009) Cardiac cushions modulate action potential phenotype during heart development [corrected]. Dev Dyn 238(3): 611–623. https://doi.org/10.1002/dvdy.21879
  12. Lakatta EG, Maltsev VA, Vinogradova TM (2010) A coupled SYSTEM of intracellular Ca2+ clocks and surface membrane voltage clocks controls the timekeeping mechanism of the heart’s pacemaker. Circul Res 106(4): 659–673. https://doi.org/10.1161/CIRCRESAHA.109.206078
  13. DiFrancesco D, Noble D (2012) The funny current has a major pacemaking role in the sinus node. Heart Rhythm 9(2): 299–301. https://doi.org/10.1016/j.hrthm.2011.09.021
  14. Morotti S, Ni H, Peters CH, Rickert C, Asgari-Targhi A, Sato D, Glukhov AV, Proenza C, Grandi E (2021) Intracellular Na+ Modulates Pacemaking Activity in Murine Sinoatrial Node Myocytes: An in Silico Analysis. Int J Mol Sci 22(11): 5645. https://doi.org/10.3390/ijms22115645
  15. Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morphol 88(1): 49–92. https://doi.org/10.1002/jmor.1050880104
  16. Vicente-Steijn R, Passier R, Wisse LJ, Schalij MJ, Poelmann RE, Gittenberger-de Groot AC, Jongbloed MRM (2011) Funny current channel HCN4 delineates the developing cardiac conduction system in chicken heart. Heart Rhythm 8(8): 1254–1263. https://doi.org/10.1016/j.hrthm.2011.03.043
  17. Pitcairn E, Harris H, Epiney J, Pai VP, Lemire JM, Ye B, Shi NQ, Levin M, McLaughlin KA (2017) Coordinating heart morphogenesis: A novel role for hyperpolarization-activated cyclic nucleotide-gated (HCN) channels during cardiogenesis in Xenopus laevis. Commun Integr Biol 10(3): e1309488. https://doi.org/10.1080/19420889.2017.1309488
  18. Joung B, Tang L, Maruyama M, Han S, Chen Z, Stucky M, Jones LR, Fishbein MC, Weiss JN, Chen P-S, Lin S-F (2009) Intracellular calcium dynamics and acceleration of sinus rhythm by beta-adrenergic stimulation. Circulation 119(6): 788–796. https://doi.org/10.1161/CIRCULATIONAHA.108.817379
  19. Gao Z, Chen B, Joiner M-LA, Wu Y, Guan X, Koval OM, Chaudhary AK, Cunha SR, Mohler PJ, Martins JB, Song L-S, Anderson ME (2010) I(f) and SR Ca(2+) release both contribute to pacemaker activity in canine sinoatrial node cells. J Mol Cell Cardiol 49 (1): 33–40. https://doi.org/10.1016/j.yjmcc.2010.03.019
  20. Rigg L, Terrar DA (1996) Possible role of calcium release from the sarcoplasmic reticulum in pacemaking in guinea-pig sino-atrial node. Exp Physiol 81(5): 877–880. https://doi.org/10.1113/expphysiol.1996.sp003983
  21. Tóth A, Kiss L, Varró A, Nánási PP (2009) Potential therapeutic effects of Na+/Ca2+exchanger inhibition in cardiac diseases. Curr Med Chem 16(25): 3294–3321. https://doi.org/10.2174/092986709788803268
  22. Niu C-F, Yasuhide W, Ono K, Iwamoto T, Yamashita K, Satoh H, Urushida T, Hayashi H, Kimura J (2007) Characterization of SN-6, a novel Na+/Ca2+ exchange inhibitor in guinea pig cardiac ventricular myocytes. Eur J Pharmacol 573(1–3): 161–169. https://doi.org/10.1016/j.ejphar.2007.06.033
  23. Sanders L, Rakovic S, Lowe M, Mattick PAD, Terrar DA (2006) Fundamental importance of Na+-Ca2+ exchange for the pacemaking mechanism in guinea-pig sino-atrial node. J Physiol 571(3): 639–649.https://doi.org/10.1113/jphysiol.2005.100305
  24. Linask KK, Han MD, Artman M, Ludwig CA (2001) Sodium-calcium exchanger (NCX-1) and calcium modulation: NCX protein expression patterns and regulation of early heart development. Dev Dyn 221(3): 249–264. https://doi.org/10.1002/dvdy.1131
  25. Dutro SM, Airey JA, Beck CF, Sutko JL, Trumble WR (1993) Ryanodine receptor expression in embryonic avian cardiac muscle. Dev Biol 155(2): 431–441. https://doi.org/10.1006/dbio.1993.1041

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (247KB)

© Е.А. Лебедева, М.А. Гонотков, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>