H2S-Mediated Dilation of Pial Arteries in Rats of Different Ages: Contribution of KATP and BKCa-Channels

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Reactions of pial arteries to exogenous hydrogen sulfide exposure and assessment of the contribution of KATP and BKCa-channels to H2S-mediated dilation was studied in rats of different ages. Intravital microphotography in Sprague-Dawley rats aged 4 and 18 months was used to study the reactions of pial arteries of various diameters to the exposure of exogenous hydrogen sulfide donor solution – sodium hydrosulfide (NaHS, 30 μM), as well as their change with the preliminary use of potassium channel blockers: KATP (glibenclamide, 10 μM) and BKCa (tetraethyl ammonium, 2 mM). It was found that inhibition of H2S-mediated dilation of pial arteries and increase in constrictor responses to exogenous hydrogen sulfide exposure are taking place in rats with age. Age-related changes in H2S-induced dilatory response of the pial arteries in rats depend on the size of the vessels. With age, there is a decrease in the number of dilations of pial arteries with a diameter of more than 20 μm. At the same time, aging does not affect the dilatation of smaller arteries. These disorders are probably associated with changes in the processes caused by the activation of potassium channels. It was found that aging is accompanied by the increasing of KATP-channels contribution to the implementation of H2S-mediated dilation in pial arteries with diameters less than 40 μm. BKCa-channels contribution to the dilatation decreases with age. In 18 months, rats, these channels barely participate in H2S-mediated dilation in arteries with diameters more than 20 μm.

Авторлар туралы

O. Gorshkova

Pavlov Institute of Physiology, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: o_gorshkova@inbox.ru
Russia, St. Petersburg

I. Sokolova

Pavlov Institute of Physiology, Russian Academy of Sciences

Email: o_gorshkova@inbox.ru
Russia, St. Petersburg

Әдебиет тізімі

  1. Predmore BL, Alendy MJ, Ahmed KI, Leeuwenburgh C, Julian D (2010) The hydrogen sulfide signaling system: changes during aging and the benefits of caloric restriction. Age (Dordr) 32(4): 467–481. https://doi.org/10.1007/s11357-010-9150-z
  2. Kolluru GK, Shackelford RE, Shen X, Dominic P, Kevil CG (2023) Sulfide regulation of cardiovascular function in health and disease. Nat Rev Cardiol 20(2): 109–125. https://doi.org/10.1038/s41569-022-00741-6
  3. Wilkie SE, Borland G, Carter RN, Morton NM, Selman C (2021) Hydrogen sulfide in ageing, longevity and disease. Biochem J 478(19): 3485–3504. https://doi.org/10.1042/BCJ20210517
  4. Гусакова СВ, Смаглий ЛВ, Бирулина ЮГ, Ковалев ИВ, Носарев АВ, Петрова ИВ, Реутов ВП (2017) Молекулярные механизмы действия газотрансмиттеров NO, CO и H2S в гладкомышечных клетках и влияние NO-генерирующих соединений (нитратов и нитритов) на среднюю продолжительность жизни. Успехи физиол наук 48(1): 24–52. [Gusakova SV, Smagliy LV, Birulina YG, Kovalev IV, Nosarev AV, Petrov IV, Reutov VP (2017) Molecular mechanisms of action of gas transmitters NO, CO and H2S in smooth muscle cells and effect of NO‑generating compounds (nitrates and nitrites) on average life expectancy. Uspekhi Fisiol Nauk 48(1): 24–52. (In Russ)].
  5. Коцюба АЕ (2011) Распределение НАДФН-диафоразы и ферментов синтеза сероводорода в стенке артерий головного мозга. Вестн новых мед технол 18(2): 255–256. [Kotsyuba AE (2011) Distribution of NADPH-diaphorase and enzyme synthesis of hydrogen sulfide in the walls of brain arterias. Vestn novykh med tekhnol 18(2): 255–256. (In Russ)].
  6. Dongó E, Kiss L (2020) The potential role of hydrogen sulfide in the regulation of cerebrovascular tone. Biomolecules 10(12): 1685. https://doi.org/10.3390/biom10121685
  7. Gheibi S, Jeddi S, Kashfi K, Ghasemi A (2018) Regulation of vascular tone homeostasis by NO and H2S: Implications in hypertension. Biochem Pharmacol 149: 42–59. https://doi.org/10.1016/j.bcp.2018.01.017
  8. Perridon BW, Leuvenink HG, Hillebrands JL, van Goor H, Bos EM (2016) The role of hydrogen sulfide in aging and age-related pathologies. Aging (Albany NY) 8(10): 2264–2289. https://doi.org/10.18632/aging.101026
  9. Calabrese V, Scuto M, Salinaro AT, Dionisio G, Modafferi S, Ontario ML, Greco V, Sciuto S, Schmitt CP, Calabrese EJ, Peters V (2020) Hydrogen sulfide and carnosine: modulation of oxidative stress and inflammation in kidney and brain axis. Antioxidants (Basel) 9(12): 1303. https://doi.org/10.3390/antiox9121303
  10. Hine C, Zhu Y, Hollenberg AN, Mitchell JR (2018) Dietary and endocrine regulation of endogenous hydrogen sulfide production: implications for longevity. Antioxid Redox Signal 28(16): 1483–1502. https://doi.org/10.1089/ars.2017.7434
  11. Liu Y-H, Lu M, Hu L-F, Wong PT-H, Webb G, Bian J-S (2012) Hydrogen sulfide in the mammalian cardiovascular system. Antioxid Redox Signal 17(1): 141–185. https://doi.org/10.1089/ars.2011.4005
  12. Yuan S, Shen X, Kevil CG (2017) Beyond a gasotransmitter: hydrogen sulfide and polysulfide in cardiovascular health and immune response. Antioxid Redox Signal (27): 634–653. https://doi.org/10.1089/ars.2017.7096
  13. Sindler AL, Delp MD, Reyes R, Wu G, Muller-Delp JM (2009) Effects of ageing and exercise training on eNOS uncoupling in skeletal muscle resistance arterioles. J Physiol 587(15): 3885–3897. https://doi.org/10.1113/jphysiol.2009.172221
  14. Parfenova H, Liu J, Hoover DT, Fedinec AL (2020) Vasodilator effects of sulforaphane in cerebral circulation: A critical role of endogenously produced hydrogen sulfide and arteriolar smooth muscle KATP and BK-channels in the brain. J Cereb Blood Flow Metab 40(10): 1987–1996. https://doi.org/10.1177/0271678X19878284
  15. Sun HJ, Wu ZY, Nie XW, Bian JS (2020) Role of endothelial dysfunction in cardiovascular diseases: the link between inflammation and hydrogen sulfide. Front Pharmacol 10: 1568. https://doi.org/10.3389/fphar.2019.01568
  16. Liu XY, Qian LL, Wang RX (2022) Hydrogen sulfide-induced vasodilation: the involvement of vascular potassium channels. Front Pharmacol 13: 911704. https://doi.org/10.3389/fphar.2022.911704
  17. Wang YZ, Ngowi EE, Wang D, Qi HW, Jing MR, Zhang YX, Cai CB, He QL, Khattak S, Khan NH, Jiang QY, Ji XY, Wu DD (2021) The potential of hydrogen sulfide donors in treating cardiovascular diseases. Int J Mol Sci 22(4): 2194. https://doi.org/10.3390/ijms22042194
  18. Behringer EJ, Hakim MA (2019) Functional interaction among KCa and TRP-channels for cardiovascular physiology: Modern perspectives on aging and chronic disease. Int J Mol Sci 20(6): 1380. https://doi.org/10.3390/ijms20061380
  19. Hakim MA, Chum PP, Buchholz JN, Behringer EJ (2020) Aging alters cerebrovascular endothelial GPCR and K+ channel function: divergent role of biological sex. J Gerontol A Biol Sci Med Sci 75(11): 2064–2073. https://doi.org/10.1093/gerona/glz275
  20. Tykocki NR, Boerman EM, Jackson WF (2017) Smooth muscle ion channels and regulation of vascular tone in resistance arteries and arterioles. Compr Physiol 7(2): 485–581. https://doi.org/10.1002/cphy.c160011
  21. Gorshkova OP (2022) Age-related changes in the functional activity of ATP-sensitive potassium channels in rat pial arteries. J Evol Biochem Phys 58(2): 345–352. https://doi.org/10.1134/S0022093022020041
  22. Pourcyrous M, Chilakala S, Elabiad MT, Parfenova H, Leffler CW (2018) Does prolonged severe hypercapnia interfere with normal cerebrovascular function in piglets? Pediatr Res 84(2): 290–295. https://doi.org/10.1038/s41390-018-0061-5
  23. Gheibi S, Jeddi S, Kashfi K, Ghasemi A (2018) Regulation of vascular tone homeostasis by NO and H2S: Implications in hypertension. Biochem Pharmacol 149: 42–59. https://doi.org/10.1016/j.bcp.2018.01.01
  24. Koenitzer JR, Isbell TS, Patel HD, Benavides GA, Dickinson DA, Patel RP, Darley-Usmar VM, Lancaster JR Jr, Doeller JE, Kraus DW (2007) Hydrogen sulfide mediates vasoactivity in an O2-dependent manner. Am J Physiol Heart Circ Physiol 292(4): H1953–H1960. https://doi.org/10.1152/ajpheart.01193.2006
  25. Wilson DF, Matschinsky FM (2020) Cerebrovascular Blood Flow Design and Regulation; Vulnerability in Aging Brain. Front Physiol 11: 584891. https://doi.org/10.3389/fphys.2020.584891
  26. Szijártó IA, Markó L, Filipovic MR, Miljkovic JL, Tabeling C, Tsvetkov D, Wang N, Rabelo LA, Witzenrath M, Diedrich A, Tank J, Akahoshi N, Kamata S, Ishii I, Gollasch M (2018) Cystathionine γ-lyase-produced hydrogen sulfide controls endothelial NO bioavailability and blood pressure. Hypertension 71: 1210–1217. https://doi.org/10.1161/HYPERTENSIONAHA.117.10562
  27. Горшкова ОП (2022) Особенности механизмов NO-опосредованной дилатации пиальных артерий на воздействие ацетилхолина у стареющих крыс. Интеграт физиол 3(3): 373–383. [Gorshkova OP (2022) Features of mechanisms of NO-mediated dilation of pial arteries to acetylcholine in aging rats. Integrat Fiziol 3(3): 373–383. (In Russ)]. https://doi.org/10.33910/2687-1270-2022-3-3-367-377
  28. Gorshkova OP (2021) Age-related changes in the role of potassium channels in acetylcholine-induced dilation of pial arteries in normotensive and spontaneously hypertensive rats. J Evol Biochem Phys 57(1): 55–65. https://doi.org/10.1134/S0022093021010051
  29. Beleznai TZ, Yarova PL, Yuill KH, Dora KA (2011) Smooth muscle Ca2+-activated and voltage-gated K+ channels modulate conducted dilation in rat isolated small mesenteric arteries. Microcirculation 18: 487–500. https://doi.org/10.1111/j.1549-8719.2011.00109.x
  30. Driggers CM, Shyng SL (2023) Mechanistic insights on KATP-channel regulation from cryo-EM structures. J Gen Physiol 155(1): e202113046. https://doi.org/10.1085/jgp.202113046
  31. Strickland M, Yacoubi-Loueslati B, Bouhaouala-Zahar B, Pender SLF, Larbi A (2019) Relationships between ion channels, mitochondrial functions and inflammation in human aging. Front Physiol 10: 158. https://doi.org/10.3389/fphys.2019.00158
  32. Tracy EP, Hughes W, Beare JE, Rowe G, Beyer A, LeBlanc AJ (2021) Aging-induced impairment of vascular function: mitochondrial redox contributions and physiological/clinical implications. Antioxid Redox Signal 35(12): 974–1015. https://doi.org/10.1089/ars.2021.0031
  33. Pourbagher-Shahri AM, Farkhondeh T, Talebi M, Kopustinskiene DM, Samarghandian S, Bernatoniene J (2021) An overview of NO signaling pathways in aging. Molecules 26(15): 4533. https://doi.org/10.3390/molecules26154533
  34. Li Y, Aziz Q, Tinker A (2021) The pharmacology of ATP-sensitive K+-channels (KATP). Handb Exp Pharmacol 267: 357–378. https://doi.org/10.1007/164_2021_466
  35. Mustafa AK, Sikka G, Gazi SK, Steppan J, Jung SM, Bhunia AK, Barodka VM, Gazi FK, Barrow RK, Wang R, Amzel LM, Berkowitz DE, Snyder SH (2011). Hydrogen sulfide as endothelium-derived hyperpolarizing factor sulfhydrates potassium channels. Circ Res 109: 1259–1268. https://doi.org/10.1161/CIRCRESAHA.111.240242
  36. Sitdikova GF, Fuchs R, Kainz V, Weiger TM, Hermann A (2014) Phosphorylation of BK channels modulates the sensitivity to hydrogen sulfide (H2S). Front Physiol 431. https://doi.org/10.3389/fphys.2014.00431
  37. Kirkham DL, Robinson AT, Rossman MJ, Seals DR, Edwards DG (2021) Mitochondrial contributions to vascular endothelial dysfunction, arterial stiffness, and cardiovascular diseases. Am J Physiol Heart Circ Physiol 320(5): H2080–H2100. https://doi.org/10.1152/ajpheart.00917.2020
  38. Venkatachalam K (2022) Regulation of aging and longevity by ion channels and transporters. Cells 11(7): 1180. https://doi.org/10.3390/cells11071180
  39. Wilson C, Lee MD, Buckley C, Zhang X, McCarron JG (2022) Mitochondrial ATP production is required for endothelial cell control of vascular tone. Function (Oxf). https://doi.org/10.1093/function/zqac063
  40. Busija DW, Katakam PV (2014) Mitochondrial mechanisms in cerebral vascular control: shared signaling pathways with preconditioning. J Vasc Res 51(3): 175–189. https://doi.org/10.1159/000360765
  41. Sancho M, Kyle BD (2021) The large-conductance, calcium-activated potassium channel: A big key regulator of cell physiology. Front Physiol 12: 750615. https://doi.org/10.3389/fphys.2021.750615

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (721KB)
3.

Жүктеу (138KB)
4.

Жүктеу (124KB)
5.

Жүктеу (131KB)

© О.П. Горшкова, И.Б. Соколова, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>