Fibrin Coating Contributes to the Retention of the Endothelial Layer in Pulsating Flow

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The presence of a modifying coating based on extracellular matrix proteins on the inner surface of vascular prostheses is known to enhance endothelial cell adhesion and prevent detachment under pulsating flow conditions. This coating effectively reduces the risk of thrombosis and plays a critical role in determining implantation outcomes. Although proteins like collagen, fibrin, and fibrinogen are commonly used as coatings to improve cell adhesion, their relative effectiveness remains uncertain. Objective: This study aims to identify the optimal coating, based on extracellular matrix proteins, that preserves prosthesis functionality and maintains endothelial layer integrity under pulsating flow conditions. Methods: Scaffolds and vascular prostheses were fabricated using poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(ε-caprolactonone) through an electrospinning process. These structures were then modified with collagen I, fibronectin, or fibrin. Endothelial colony-forming cells (ECFCs) were seeded onto the protein-modified electrospun samples and cultured under both static and dynamic conditions. After a 3-day incubation period under static conditions, cell viability, metabolic and proliferative activity, as well as adhesive properties, were evaluated. Adhesive properties were assessed by analyzing the area occupied by the focal adhesion protein paxillin. Cell retention was determined by comparing cell density on the inner surface of 4 mm diameter vascular prostheses after a 7-day incubation period, both under pulsating flow conditions and static conditions. Results: Cell metabolic activity, viability, number, proliferation, and the area occupied by the focal adhesion protein paxillin were found to be significantly higher in samples coated with fibrin compared to those coated with collagen I and fibrinogen. The cell density (cells/cm2) of ECFCs on the inner surface of fibrin-coated prostheses showed no significant difference between dynamic and static conditions. In contrast, collagen and fibronectin coatings resulted in approximately half the cell density under pulsating flow conditions compared to static conditions. Conclusion: The fibrin coating demonstrated superior biological activity, adhesive properties, and preservation of the endothelial layer under both static and pulsating flow conditions, as compared to collagen I and fibronectin coatings. Consequently, the utilization of fibrin coating emerges as a promising option for modifying the inner surface of vascular prostheses.

作者简介

V. Matveeva

Research Institute of Complex Issues of Cardiovascular Diseases

编辑信件的主要联系方式.
Email: matveeva_vg@mail.ru
Russia, Kemerovo

E. Velikanova

Research Institute of Complex Issues of Cardiovascular Diseases

Email: matveeva_vg@mail.ru
Russia, Kemerovo

L. Antonova

Research Institute of Complex Issues of Cardiovascular Diseases

Email: matveeva_vg@mail.ru
Russia, Kemerovo

L. Barbarash

Research Institute of Complex Issues of Cardiovascular Diseases

Email: matveeva_vg@mail.ru
Russia, Kemerovo

参考

  1. Fang S, Ellman DG, Andersen DC (2021) Review: Tissue Engineering of Small-Diameter Vascular Grafts and Their In Vivo Evaluation in Large Animals and Humans. Cells 10(3): 713. https://doi.org/10.3390/cells10030713
  2. Táborská J, Riedelová Z, Brynda E, Májek P, Riedel T (2021) Endothelialization of an ePTFE vessel prosthesis modified with an antithrombogenic fibrin/heparin coating enriched with bound growth factors. RSC Adv 11: 5903. https://doi.org/10.1039/D1RA00053E
  3. Bian Q, Chen J, Weng Y, Li S (2022) Endothelialization strategy of implant materials surface: The newest research in recent 5 years. J Appl Biomater Funct Mater 20: 22808000221105332. https://doi.org/10.1177/2280800022110533
  4. Wong CS, Sgarioto M, Owida AA, Yang W, Rosenfeldt FL, Morsi YS (2006) Polyethyleneterephthalate provides superior retention of endothelial cells during shear stress compared to polytetrafluoroethylene and pericardium. Heart Lung Circ 15: 371–377. https://doi.org/10.1016/j.hlc.2006.08.002
  5. Schneider PA, Hanson SR, Price TM (1988) Durability of confluent endothelial cell monolayers on small-caliber vascular prostheses in vitro. Surgery 103: 456–462.
  6. Sgarioto M, Vigneron P, Patterson J, Malherbe F, Nagel MD, Egles C (2012) Collagen type I together with fibronectin provide a better support for endothelialization. C R Biol 335(8): 520–528. https://doi.org/10.1016/j.crvi.2012.07.003
  7. Asadishekari M, Mpoyi EN, Li Y, Eslami J, Walker M, Cantini M, Gourdon D (2022) Three-Dimensional Tunable Fibronectin-Collagen Platforms for Control of Cell Adhesion and Matrix Deposition. Front Phys 10: 806554. https://doi.org/10.3389/fphy.2022.806554
  8. Wacker M, Riedel J, Walles H, Scherner M, Awad G, Varghese S, Schürlein S, Garke B, Veluswamy P, Wippermann J, Hülsmann J (2021) Comparative Evaluation on Impacts of Fibronectin, Heparin–Chitosan, and Albumin Coating of Bacterial Nanocellulose Small-Diameter Vascular Grafts on Endothelialization In Vitro. Nanomaterials 11: 1952. https://doi.org/10.3390/nano11081952
  9. Gui L, Boyle MJ, Kamin YM, Niklason LE (2014) Construction of tissue-engineered small-diameter vascular grafts in fibrin scaffolds in 30 days. Tissue Eng Part A 20(9–10): 1499–1507. https://doi.org/10.1089/ten.TEA.2013.0263
  10. Yang L, Li X, Wu Y, Du P, Sun L, Yu Z, Song S, Yin J, Ma X, Jing C, Zhao J, Chen H, Dong Y, Zhang Q, Zhao L (2020) Preparation of PU/Fibrin Vascular Scaffold with Good Biomechanical Properties and Evaluation of Its Performance in vitro and in vivo. Int J Nanomedicine 15: 8697–8715. https://doi.org/10.2147/IJN.S274459
  11. Kutikhin AG, Tupikin AE, Matveeva VG, Shishkova DK, Antonova LV, Kabilov MR. Velikanova E (2020) Human Peripheral Blood-Derived Endothelial Colony-Forming Cells Are Highly Similar to Mature Vascular Endothelial Cells Yet Demonstrate a Transitional Transcriptomic Signature. Cells 9(4): 876. https://doi.org/10.3390/cells9040876
  12. Dong JD, Gu YQ, Li CM, Wang CR, Feng ZG, Qiu RX, Chen B, Li JX, Zhang SW, Wang ZG, Zhang J (2009) Response of mesenchymal stem cells to shear stress in tissue-engineered vascular grafts. Acta Pharmacol Sin 30(5): 530–536. https://doi.org/10.1038/aps.2009.40
  13. Poon C (2022) Measuring the density and viscosity of culture media for optimized computational fluid dynamics analysis of in vitro devices. J Mech Behav Biomed Mater 126: 105024. https://doi.org/10.1016/j.jmbbm.2021.105024
  14. Wang D, Xu Y, Li Q, Turng LS (2020) Artificial small-diameter blood vessels: materials, fabrication, surface modification, mechanical properties, and bioactive functionalities. J Mater Chem B 8(9): 1801–1822. https://doi.org/10.1039/c9tb01849b
  15. Chernonosova V, Gostev A, Murashov I, Chelobanov B, Karpenko A, Laktionov P (2021) Assessment of electrospun pellethane-based scaffolds for vascular tissue engineering. Materials (Basel). 14(13): 3678. https://doi.org/10.3390/ma14133678
  16. Попов ГИ, Попрядухин ПВ, Юкина ГЮ, Сухорукова ЕГ, Иванькова ЕМ, Вавилов ВН, Юдин ВЕ (2020) Морфологическое исследование биорезорбируемой трубчатой матрицы малого диаметра из поли(L-лактида) для тканеинженерного сосудистого импланта. Цитология 62 (1): 38–46. [Popov GI, Popryadukhin PV, Yukinac GY, Sukhorukova EG, Ivankova E.M, Vavilova VN, Yudin VE (2020) Morphological study of a bioresorbable tubular matrix of a small diameter from a poly(l-lactide) for a tissue-engineered vascular implant. Cytology 62(1): 38–46. (In Russ)]. https://doi.org/10.31857/S004137712001006X
  17. Чирятьева АЕ, Завражных НА, Попрядухин ПВ, Юкина ГЮ, Кривенцов АВ, Иванькова ЕМ, Юдин ВЕ (2022) Нетканые сосудистые протезы малого диаметра на основе нановолокон из ароматического полиимида. Биофизика 67(4): 827–832. [Chiriateva AE, Zavrazhnykh NA, Popryadukhin PV, Yukina GYu, Kriventsov AV, Ivankova EM, Yudin VE (2022) Small diameter nonwoven vascular prostheses based on aromatic polyimide nanofibers. Biophysics 67(4): 827–832. (In Russ)]. https://doi.org/10.31857/S0006302922040226
  18. Jirofti N, Mohebbi-Kalhori D, Samimi A, Hadjizadeh A, Kazemzadeh GH (2020) Fabrication and characterization of a novel compliant small-diameter PET/PU/PCL triad-hybrid vascular graft. Biomed Mater 15(5): 055004. https://doi.org/10.1088/1748-605X/ab8743
  19. Khanova MYu, Velikanova EA, Matveeva VG, Krivkina EO, Glushkova TV, Sevostianova VV, Kutikhin AG, Antonova LV (2021) Endothelial cell monolayer formation on a small-diameter vascular graft surface under pulsatile flow conditions. Rus J Transplantol Artif Organs 23(3): 101–114. https://doi.org/10.15825/1995-1191-2021-3-101-114
  20. Chlupáč J, Filová E, Riedel T, Houska M, Brynda E, Remy-Zolghadri M, Bareille R, Fernandez P, Daculsi R, Bourget C, Bordenave L, Bačáková L (2014) Attachment of human endothelial cells to polyester vascular grafts: pre-coating with adhesive protein assemblies and resistance to short-term shear stress. Physiol Res 63(2): 167–177. https://doi.org/10.33549/physiolres.932577
  21. Burridge K (2017) Focal adhesions: a personal perspective on a half century of progress. FEBS J 284(20): 3355–3361. https://doi.org/10.1111/febs.14195
  22. Ripamonti M, Wehrle-Haller B, de Curtis I (2022) Paxillin: A Hub for Mechano-Transduction from the β3 Integrin-Talin-Kindlin Axis. Front Cell Dev Biol 10: 852016. https://doi.org/10.3389/fcell.2022.852016
  23. Post A, Wang E, Cosgriff-Hernandez E (2019) A Review of Integrin-Mediated Endothelial Cell Phenotype in the Design of Cardiovascular Devices. Ann Biomed Eng 47: 366. https://doi.org/10.1007/s10439-018-02171-3
  24. Schaufler V, Czichos-Medda H, Hirschfeld-Warnecken V, Neubauer S, Rechenmacher F, Medda R, Kessler H, Geiger B, Spatz JP, Cavalcanti-Adam EA (2016) Selective binding and lateral clustering of α5β1 and αvβ3 integrins: Unraveling the spatial requirements for cell spreading and focal adhesion assembly. Cell Adhesion & Migration 10(5): 505–515. https://doi.org/10.1080/19336918.2016.1163453
  25. Hunter EJ, Hamaia SW, Kim PSK, Malcor JD, Farndale RW (2022) The effects of inhibition and siRNA knockdown of collagen-binding integrins on human umbilical vein endothelial cell migration and tube formation. Sci Rep 12: 21601. https://doi.org/10.1038/s41598-022-25937-1
  26. Матвеева ВГ, Ханова МЮ, Антонова ЛВ, Барбараш ЛС (2020) Фибрин – перспективный материал для тканевой сосудистой инженерии. Вестн трансплантол и искусств органов 22(1): 196–208. [Matveeva VG, Khanova MU, Antonova LV, Barbarash LS (2020) Fibrin – a promising material for vascular tissue engineering. Rus J Transplantol and Artif Organs 22(1): 196–208. (In Russ)]. https://doi.org/10.15825/1995-1191-2020-1-196-208
  27. Roux E, Bougaran P, Dufourcq P, Couffinhal T (2020) Fluid Shear Stress Sensing by the Endothelial Layer. Front Physiol 11: 861. https://doi.org/10.3389/fphys.2020.00861
  28. Chandran Latha K, Sreekumar A, Beena V, Lakkappa RB, Kalyani R, Nair R, Kalpana SR, Kartha CC, Surendran S (2021) Shear stress alterations activate BMP4/pSMAD5 signaling and induce endothelial mesenchymal transition in varicose veins. Cells 10: 3563. https://doi.org/10.3390/cells10123563
  29. Papaioannou TG, Stefanadis C (2005) Vascular wall shear stress: Basic principles and methods. Hell J Cardiol 46: 9–15.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (81KB)
3.

下载 (516KB)
4.

下载 (1MB)
5.

下载 (1MB)

版权所有 © В.Г. Матвеева, Е.А. Великанова, Л.В. Антонова, Л.С. Барбараш, 2023

##common.cookie##