The Influence of Hibernation on Electrical Activity and Potassium Currents in Myocardium of Long-Tailed Ground Squirrel

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Hibernating mammals are capable of reducing the temperature of their bodies down to 0°C. During this process, their heart is highly resistant to the occurrence of arrhythmias caused by temperature fall. In this research we have for the first-time studied potassium currents in the myocardium of a hibernating mammal on the example of long-tailed ground squirrel (Citellus undulatus) and its change upon hibernation. Using patch clamp method, we studied transient outward current Ito and background inward rectifier current IK1 in isolated ventricular and atrial myocytes from summer (active) and winter (hibernating) ground squirrels. The study revealed, that at room temperature and at positive holding potentials peak amplitude of Ito in cardiomyocytes from hibernating group of animals is lower than that of the summer group. The downregulation of Ito upon hibernation was more pronounced in ventricular myocardium in comparison to that in atrial. Background inward rectifier current IK1 was enhanced in ventricular myocardium of winter group of animals, upon the adaptation to hibernation. In atrial myocardium there were no statistically significant differences of IK1 between the two groups. We also recorded action potentials in isolated ventricular cardiomyocytes. The duration of action potentials at the levels of 50 and 90% repolarization did not differ between the groups, we also did not find significant differences in maximum upstroke velocity and in the level of resting membrane potential. Taken together, the revealed differences in the amplitude of Ito and IK1 between active and hibernating ground squirrels can serve as mechanisms increasing the duration of refractory period and to maintaining the level of resting membrane potential at low temperatures.

Негізгі сөздер

Авторлар туралы

T. Filatova

Department of Human and Animal Physiology, Biological Faculty, Lomonosov Moscow State University

Email: abram340@mail.ru
Russia, Moscow

D. Abramochkin

Department of Human and Animal Physiology, Biological Faculty, Lomonosov Moscow State University

Хат алмасуға жауапты Автор.
Email: abram340@mail.ru
Russia, Moscow

Әдебиет тізімі

  1. Lyman CP, Chatfield PO (1955) Physiology of Hibernation in Mammals. Phys Rev 35: 403–425. https://doi.org/10.1152/PHYSREV.1955.35.2.403
  2. Barnes BM (1989) Freeze Avoidance in a Mammal: Body Temperatures Below 0°C in an Arctic Hibernator. Science 244: 1593–1595. https://doi.org/10.1126/SCIENCE.2740905
  3. Andrews MT (2007) Advances in molecular biology of hibernation in mammals. BioEssays 29: 431–440. https://doi.org/10.1002/BIES.20560
  4. Johansson BW (1996) The hibernator heart – Nature’s model of resistance to ventricular fibrillation. Cardiovasc Res 31: 826–832. https://doi.org/10.1016/S0008-6363(95)00192-1
  5. Burlington RF, Darvish A (1988) Low-Temperature Performance of Isolated Working Hearts from a Hibernator and a Nonhibernator. Physiol Zool 61: 387–395. https://doi.org/10.1086/PHYSZOOL.61.5.30161260
  6. White JD (1980) Cardiac Arrest in Hypothermia. JAMA 244: 2262–2262. https://doi.org/10.1001/JAMA.1980.03310200014007
  7. Johansson BW (1985) Ventricular Repolarization and Fibrillation Threshold in Hibernating Species. Eur Heart J 6: 53–62. https://doi.org/10.1093/EURHEARTJ/6.SUPPL_D.53
  8. Egorov YV, Glukhov AV, Efimov IR, Rosenshtraukh LV (2012) Hypothermia-induced spatially discordant action potential duration alternans and arrhythmogenesis in nonhibernating versus hibernating mammals. Am J Physiol – Hear Circ Physiol 303(8): H1035–H1046. https://doi.org/10.1152/AJPHEART.00786.2011/ASSET/IMAGES/LARGE/ZH40201205500008.JPEG
  9. Fedorov VV, Glukhov AV, Sudharshan S, Egorov Y, Rosenshtraukh LV, Efimov IR (2008) Electrophysiological mechanisms of antiarrhythmic protection during hypothermia in winter hibernating versus nonhibernating mammals. Hear Rhythm 5: 1587–1596. https://doi.org/10.1016/J.HRTHM.2008.08.030
  10. Kuzmin VS, Abramov AA, Egorov YV, Rosenshtraukh LV (2019) Hypothermia-Induced Postrepolarization Refractoriness Is the Reason of the Atrial Myocardium Tolerance to the Bioelectrical Activity Disorders in the Hibernating and Active Ground Squirrel Citellus undulatus. Dokl Biol Sci 486: 63–68. https://doi.org/10.1134/S0012496619030050/FIGURES/3
  11. Kuz’min VS, Abramov AA, Egorov IV, Rozenshtraukh LV (2014) Hypothermia induced alteration of refractoriness in the ventricular myocardium of ground souirrel Citellus undulatus. Ross Fiziol Zhurnal Im IM Sechenova 100: 1399–1408.
  12. Alekseev AE, Markevich NI, Korystova AF, Terzic A, Kokoz YM (1996) Comparative analysis of the kinetic characteristics of L-type calcium channels in cardiac cells of hibernators. Biophys J 70: 786–797. https://doi.org/10.1016/S0006-3495(96)79618-2
  13. Abramochkin DV, Filatova TS, Pustovit KB, Dzhumaniiazova I, Karpushev AV (2021) Small G—protein RhoA is a potential inhibitor of cardiac fast sodium current. J Physiol Biochem 77: 13–23. https://doi.org/10.1007/s13105-020-00774-w
  14. Isenberg G, Klockner U (1982) Calcium tolerant ventricular myocytes prepared by preincubation in a “KB medium.” Pflügers Arch Eur J Physiol 395: 6–18. https://doi.org/10.1007/BF00584963
  15. Yue L, Feng J, Li GR, Nattel S (1996) Transient outward and delayed rectifier currents in canine atrium: properties and role of isolation methods. Am J Physiol Circ Physiol 270: H2157–H2168. https://doi.org/10.1152/AJPHEART.1996.270.6.H2157
  16. Ibarra J, Morley GE, Delmar M (1991) Dynamics of the inward rectifier K+ current during the action potential of guinea pig ventricular myocytes. Biophys J 60: 1534–1539. https://doi.org/10.1016/S0006-3495(91)82187-7
  17. Apkon M, Nerbonne JM (1991) Characterization of two distinct depolarization-activated K+ currents in isolated adult rat ventricular myocytes. J Gen Physiol 97: 973–1011. https://doi.org/10.1085/JGP.97.5.973
  18. Linz KW, Meyer R (2000) Profile and kinetics of L-type calcium current during the cardiac ventricular action potential compared in guinea-pigs, rats and rabbits. Pflügers Arch 439: 588–599. https://doi.org/10.1007/S004249900212
  19. Dong M, Yan S, Chen Y, Niklewski PJ, Sun X, Chenault K, Wang HS (2010) Role of the Transient Outward Current in Regulating Mechanical Properties of Canine Ventricular Myocytes. J Cardiovasc Electrophysiol 21: 697–703. https://doi.org/10.1111/J.1540-8167.2009.01708.X
  20. Liu B, Arlock P, Wohlfart B, Johansson BW (1991) Temperature effects on the Na and Ca currents in rat and hedgehog ventricular muscle. Cryobiology 28: 96–104. https://doi.org/10.1016/0011-2240(91)90011-C
  21. Wilson JR, Clark RB, Banderali U, Giles WR (2011) Measurement of the membrane potential in small cells using patch clamp methods. Channels 5: 530. https://doi.org/10.4161/CHAN.5.6.17484

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (197KB)
3.

Жүктеу (119KB)
4.

Жүктеу (125KB)

© Т.С. Филатова, Д.В. Абрамочкин, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>