Vasoactive and Neuroprotective Action of с-Jun-N-Terminal Kinases Inhibitor in Rats with Chronic Brain Hypoperfusion

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The aim of this study was to evaluate the vasoactive and neuroprotective effects of c-Jun-N-terminal kinase inhibitor IQ-1 (11H-indeno[1,2-b]quinoxalin-11-one oxime) in chronic cerebral hypoperfusion caused by irreversible bilateral ligation of carotid arteries. Cerebral blood flow was measured quantitatively (hydrogen clearance method) simultaneously in the parietal cortex, hippocampus, substantia nigra, and striatum of the brain of awake rats. It was found that ligation of the carotid arteries caused a decrease in blood flow in the brain structures with a more pronounced decrease in the cortex (by 48% of the initial level) and with the smallest drop in the substantia nigra (by 25% of the initial level). The reduced level of blood flow persisted for 14 days of measurements. The responses of the cerebral vessels to hypercapnic probes (5% CO2) were lost during the 2-week hypoperfusion period, and the neurological status of the animals did not improve. The administration of IQ-1 (50 mg/kg, intraperitoneally, every 48 hours for 14 days) was accompanied by an increase in blood flow in all brain structures. The maximum increase in blood flow was observed in the striatum and the minimum in the substantia nigra. After the administration of IQ-1, the sensitivity of the cerebral vessels to the hypercapnic stimulus was restored and the neurological state of the animals significantly improved by the end of the second week of cerebral hypoperfusion. The results show that the use of the JNK inhibitor can reduce cerebrovascular disorders and associated neurological disorders in hypoperfusion brain injury.

Авторлар туралы

S. Zhilyaev

Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Email: atochin@cvrc.mgh.harvard.edu
Russia, St. Petersburg

T. Platonova

Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Email: atochin@cvrc.mgh.harvard.edu
Russia, St. Petersburg

A. Khlebnikov

Tomsk Polytechnic University

Email: atochin@cvrc.mgh.harvard.edu
Russia, Tomsk

I. Schepetkin

Tomsk Polytechnic University; Department of Microbiology and Cell Biology, Montana State University

Email: atochin@cvrc.mgh.harvard.edu
Russia, Tomsk; USA, Bozeman

I. Demchenko

Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Email: atochin@cvrc.mgh.harvard.edu
Russia, St. Petersburg

D. Atochin

Tomsk Polytechnic University; Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School

Хат алмасуға жауапты Автор.
Email: atochin@cvrc.mgh.harvard.edu
Russia, Tomsk; USA, Massachusetts, Charlestown

Әдебиет тізімі

  1. Gupta S, Barrett T, Whitmarsh AJ, Cavanagh J, Sluss HK, Dérijard B, Davis RJ (1996) Selective interaction of JNK protein kinase isoforms with transcription factors. EMBO J 15(11): 2760–2770.
  2. Waetzig V, Herdegen T (2005) Context-specific inhibition of JNKs: overcoming the dilemma of protection and damage. Trends Pharmacol Sci 26(9): 455–461. https://doi.org/10.1016/j.tips.2005.07.006
  3. Bode AM, Dong Z (2007) The functional contrariety of JNK. Mol Carcinog 46(8): 591–598. https://doi.org/10.1002/mc.20348
  4. Shvedova M, Anfinogenova Y, Atochina-Vasserman EN, Schepetkin IA, Atochin DN (2018) c-Jun-N-terminal kinases (JNKs) in myocardial and cerebral ischemia/reperfusion injury. Front Pharmacol 9: 715. https://doi.org/10.3389/fphar.2018.00715
  5. Javadov S, Jang S, Agostini B (2014) Crosstalk between mitogen-activated protein kinases and mitochondria in cardiac diseases: therapeutic perspectives. Pharmacol Ther 144(2): 202–225. https://doi.org/10.1016/j.pharmthera.2014.05.013
  6. Nijboer CH, van der Kooij MA, van Bel F, Ohl F, Heijnen CJ, Kavelaars A (2010) Inhibition of the JNK/AP-1 pathway reduces neuronal death and improves behavioral outcome after neonatal hypoxic-ischemic brain injury. Brain Behav Immun 24(5): 812–821. https://doi.org/10.1016/j.bbi.2009.09.008
  7. Johnson GL, Nakamura K (2006) The kinase/stress-activated pathway: regulation, function and role in human disease. Biochim Biophys Acta 1773(8): 1341–1348. https://doi.org/10.1016/j.bbamcr.12.009
  8. Irving EA, Bamford M (2002) Role of mitogen- and stress-activated kinases in ischemic injury. J Cereb Blood Flow Metab 22(6): 631–647. https://doi.org/10.1097/00004647-200206000-00001
  9. Schepetkin IA, Khlebnikov AI, Potapov AS, Kovrizhina AR, Matveevskaya VV, Belyanin ML, Atochin DN, Zanoza SO, Gaidarzhy NM, Lyakhov SA, Kirpotina LN, Quinn MT (2019) Synthesis, biological evaluation, and molecular modeling of 11H-indeno[1,2-b]quinoxalin-11-one derivatives and tryptanthrin-6-oxime as c-Jun N-terminal kinase inhibitors. Eur J Med Chem 161: 179–191. https://doi.org/10.1016/j.ejmech.2018.10.023
  10. Schepetkin IA, Kirpotina LN, Khlebnikov AI, Hanks TS, Kochetkova I, Pascual DW, Jutila MA, Quinn MT (2012) Identification and characterization of a novel class of c-Jun N-terminal kinase inhibitors. Mol Pharmacol 81(6): 832–845. https://doi.org/10.1124/mol.111.077446
  11. Atochin DN, Schepetkin IA, Khlebnikov AI, Seledtsov VI, Swanson H, Quinn MT, Huang PL (2016) A novel dual NO-donating oxime and c-Jun N-terminal kinase inhibitor protects against cerebral ischemia-reperfusion injury in mice. Neurosci Lett 618: 45–49. https://doi.org/10.1016/j.neulet.2016.02.033
  12. Plotnikov MB, Chernysheva GA, Aliev OI, Smol’iakova VI, Fomina TI, Osipenko AN, Rydchenko VS, Anfinogenova YJ, Khlebnikov AI, Schepetkin IA, Atochin DN (2019) Protective Effects of a New C-Jun N-terminal Kinase Inhibitor in the Model of Global Cerebral Ischemia in Rats. Molecules 24(9): 1722–1746. https://doi.org/10.3390/molecules24091722
  13. Farkas E, Luiten PG, Bari F (2007) Permanent, bilateral common carotid artery occlusion in the rat: a model for chronic cerebral hypoperfusion-related neurodegenerative diseases. Brain Res Rev 54(1): 162–180. https://doi.org/10.1016/j.brainresrev.2007.01.003
  14. Nussmeier NA (2002) A review of risk factors for adverse neurologic outcome after cardiac surgery. J Extra Corpor Technol 34(1): 4–10.
  15. Cechetti F, Worm PV, Pereira LO, Siqueira IR, A Netto C (2010) The modified 2VO ischemia protocol causes cognitive impairment similar to that induced by the standard method, but with a better survival rate. Braz J Med Biol Res 43(12): 1178–1183. https://doi.org/10.1590/s0100-879x2010007500124
  16. Ni J, Ohta H, Matsumoto K, Watanabe H (1994) Progressive cognitive impairment following chronic cerebral hypoperfusion induced by permanent occlusion of bilateral carotid arteries in rats. Brain Res 653(1–2): 231–236. https://doi.org/10.1016/0006-8993(94)90394-8
  17. Paxinos G, Watson C, Pennisi M, Topple A (1985) Bregma, lambda and the interaural midpoint in stereotaxic surgery with rats of different sex, strain and weight. J Neurosci Methods 13(2): 139–143. https://doi.org/10.1016/0165-0270(85)90026-3
  18. Eklöf B, Siesjö BK (1973) Cerebral blood flow in ischemia caused by carotid artery ligation in the rat. Acta Physiol Scand 87(1): 69–77. https://doi.org/10.1111/j.1748-1716.1973.tb05367.x
  19. Demchenko IT, Luchakov YI, Moskvin AN, Gutsaeva DR, Allen BW, Thalmann ED, Piantadosi CA (2005) Cerebral blood flow and brain oxygenation in rats breathing oxygen under pressure. J Cereb Blood Flow Metab 25(10): 1288–1300. https://doi.org/10.1038/sj.jcbfm.9600110
  20. McGraw CP, Pashayan AG, Wendel OT (1976) Cerebral infarction in the Mongolian gerbil exacerbated by phenoxybenzamine treatment. Stroke 7(5): 485–488. https://doi.org/10.1161/01.str.7.5.485
  21. Ганнушкина ИВ (2000) Мозговое кровообращение при разных видах циркуляторной гипоксии мозга. Вестник РАМН 9: 22–27. [Gannushkina IV (2000) Cerebral circulation in different types of circulatory hypoxia of the brain. Vestnik RAMN 9: 22–27. (In Russ)].
  22. Otori T, Katsumata T, Muramatsu H, Kashiwagi F, Katayama Y, Terashi A (2003) Long-term measurement of cerebral blood flow and metabolism in a rat chronic hypoperfusion model. Clin Exp Pharmacol Physiol 30(4): 266–272. https://doi.org/10.1046/j.1440-1681.2003.03825.x
  23. Tsuchiya M, Sako K, Yura S, Yonemasu Y (1992) Cerebral blood flow and histopathological changes following permanent bilateral carotid artery ligation in Wistar rats. Exp Brain Res 89(1): 87–92. https://doi.org/10.1007/BF00229004
  24. Dreier JP, Körner K, Görner A, Lindauer U, Weih M, Villringer A, Dirnagl U (1995) Nitric oxide modulates the CBF response to increased extracellular potassium. J Cereb Blood Flow Metab 15(6): 914–919. https://doi.org/10.1038/jcbfm.1995.116

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (93KB)
3.

Жүктеу (79KB)
4.

Жүктеу (59KB)

© С.Ю. Жиляев, Т.Ф. Платонова, А.И. Хлебников, И.А. Щепёткин, И.Т. Демченко, Д.Н. Аточин, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>