Correction of Immunological and Behavioral Parameters of Rats with Experimental Traumatic Brain Injury with a Preparation of Monoclonal Antibodies to the C3 Component of Complement

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

After traumatic brain injury (TBI), inflammation develops in the CNS, an active participant in which is the complement system. Activated complement fragments initiate inflammation, and subsequently significantly affect the processes of repair and regeneration. The aim of the work is to reduce neuroimmune disorders after experimental TBI by blocking excessive inflammation in the early stages of traumatic disease with monoclonal antibodies to the C3 component of complement. The work was carried out on 65 male Wistar rats using the “falling weight” model. To correct neuroinflammation, a preparation of a recombinant monoclonal antibody 3A8, specific for the C3 neodeterminant of the rat complement component, blocking the activation of the alternative complement pathway was administered (i.v., 100 mg/kg). As a reference drug, a recombinant human interleukin-1 receptor antagonist (rIL-1RA) was used, which was administered s.c. (dose of 50 mg/kg). Both drugs were administered once after 30 min of TBI (mode 1) or 24 hours after TBI (mode 2). We studied the levels of corticosterone in the blood, the cytotoxic and proliferative activity of lymphocytes, and behavioral responses in the “plus maze” test. The obtained data indicate that on the 7th day after TBI in rats treated with 3A8 antibodies in mode 1, post-traumatic weight loss was decreased, the natural cytotoxicity of splenocytes and their proliferative activity were increased, and motor and exploratory activity were increased with a significant decrease in the level of anxiety. The introduction of rIL-1RA in these regimens, as well as the combined use of both drugs, did not have a significant effect on the studied parameters.

Sobre autores

N. Serebryanaya

Institute of Experimental Medicine

Autor responsável pela correspondência
Email: serebr@gmail.com
Russia, St. Petersburg

E. Fomicheva

Institute of Experimental Medicine

Email: serebr@gmail.com
Russia, St. Petersburg

S. Shanin

Institute of Experimental Medicine

Email: serebr@gmail.com
Russia, St. Petersburg

T. Filatenkova

Institute of Experimental Medicine

Email: serebr@gmail.com
Russia, St. Petersburg

A. Zhakhov

Saint-Petersburg Pasteur Institute

Email: serebr@gmail.com
Russia, St. Petersburg

K. Nekrasova

State Research Institute of Highly Pure Biopreparations

Email: serebr@gmail.com
Russia, St. Petersburg

A. Ishchenko

Saint-Petersburg Pasteur Institute

Email: serebr@gmail.com
Russia, St. Petersburg

Bibliografia

  1. Maas AI, Stocchetti N, Bullock R (2008) Moderate and severe traumatic brain injury in adults. Lancet Neurol 7(8)7: 28–41. https://doi.org/10.1016/S1474-4422(08)70164-9
  2. Allan SM, Rothwell NJ (2001) Cytokines and acute neurodegeneration. Nat Rev Neurosci 2(10): 734–744. https://doi.org/10.1038/35094583
  3. Barkhoudarian G, Hovda DA, Giza CC (2016) The Molecular Pathophysiology of Concussive Brain Injury – an Update. Phys Med Rehabil Clin N Am 27(2): 373–393. https://doi.org/10.1016/j.pmr.2016.01.003
  4. Patterson ZR, Holahan MR (2012) Understanding the neuroinflammatory response following concussion to develop treatment strategies. Front Cell Neurosci 6: 58. https://doi.org/10.3389/fncel.2012.00058
  5. Van Erp IAM, Michailidou I, van Essen TA, van der Jagt M, Moojen W, Peul WC, Baas F, Fluiter K Tackling (2022) Neuroinflammation After Traumatic Brain Injury: Complement Inhibition as a Therapy for Secondary Injury. Neurotherapeutics 12. https://doi.org/10.1007/s13311-022-01306-8
  6. McAllister TW (2011) Neurobiological consequences of traumatic brain injury. Dialogues Clin Neurosci 13(3): 287–300. https://doi.org/10.31887/DCNS.2011.13.2/tmcallister
  7. Graham NS, Sharp DJ (2019) Understanding neurodegeneration after traumatic brain injury: from mechanisms to clinical trials in dementia. J Neurol Neurosurg Psychiatry 90 (11): 1221–1233. https://doi.org/10.1136/jnnp-2017-317557
  8. Chen M, Edwards SR, Reutens DC (2020) Complement in the Development of Post-Traumatic Epilepsy: Prospects for Drug Repurposing. J Neurotrauma 37(5): 692–705. https://doi.org/10.1089/neu.2019.6942
  9. Azouvi P, Arnould A, Dromer E, Vallat-Azouvi C. (2017) Neuropsychology of traumatic brain injury: An expert overview. Rev Neurol (Paris)173(7–8): 461–472. https://doi.org/10.1016/j.neurol.2017.07.006
  10. Gasque P, Ischenko A, Legoedec J, Mauger C, Schouft MT, Fontaine M (1993) Expression of the complement classical pathway by human glioma in culture. A model for complement expression by nerve cells. J Biol Chem 268: 25068–25074. https://doi.org/10.1016/S0021-9258(19)74572-4
  11. Barnum SR (1995) Complement biosynthesis in the central nervous system. Crit Rev Oral Biol Med 6: 132–146. https://doi.org/10.1177/10454411950060020301
  12. Gasque P, Singhrao SK, Neal JW, Gotze O, Morgan B (1997) Expression of the receptor for complement C5a (CD88) is up-regulated on reactive astrocytes, microglia, and endothelial cells in the inflamed human central nervous system. Am J Pathol 150: 31–41.
  13. Ischenko A, Sayah S, Patte C, Andreev S, Gasque P, Schouft MT, Vaudry H, Fontaine M (1998) Expression of a functional anaphylatoxin C3a receptor by astrocytes. J Neurochem 71(6): 2487–2496. https://doi.org/10.1046/j.1471-4159.1998.71062487.x
  14. Farkas I, Baranyi L, Takahashi MA, Liposits Zs, Yamamoto T, Okada H (1998) A neuronal C5a receptor and an associated apoptotic signal transduction pathway J Physiol 507(Pt 3): 679–687. https://doi.org/10.1111/j.1469-7793.1998.679bs.x
  15. Hammad A, Westacott L, Zaben M (2018) The role of the complement system in traumatic brain injury: a review. J Neuroinflammat15(1): 24. https://doi.org/10.1186/s12974-018-1066-z
  16. Fumagalli S, Perego C, Pischiutta F, Zanier ER, De Simoni M-G (2015) The ischemic environment drives microglia and macrophage function. Front Neurol 6: 81. https://doi.org/10.3389/fneur.2015.00081
  17. Alawieh A, Langley EF, Weber S, Adkins D, Tomlinson S (2018) Identifying the Role of Complement in Triggering Neuroinflammation after Traumatic Brain Injury. J Neurosci 38(10): 2519–2532. https://doi.org/10.1523/JNEUROSCI.2197-17.2018
  18. Bellander BM, von Holst H, Fredman P, Svensson M (1996) Activation of the complement cascade and increase of clusterin in the brain following a cortical contusion in the adult rat. J Neurosurg 85(3): 468–475. https://doi.org/10.3171/jns.1996.85.3.0468
  19. Rutkowski MJ, Sughrue ME, Kane AJ, Mills SA, Fang S, Parsa AT (2010) Complement and the central nervous system: emerging roles in development, protection and regeneration. Immunol Cell Biol 88: 781–786. https://doi.org/10.1038/icb.2010.48
  20. Rahpeymai Y, Hietala MA, Wilhelmsson U, Fotheringham A, Davies I, Nilsson A-K, Zwirner J, Wetsel RA, Gerard C, Pekny M, Pekna M (2006) Complement: a novel factor in basal and ischemia-induced neurogenesis. EMBO J 25: 1364–1374. https://doi.org/10.1038/sj.emboj.7601004
  21. Oderfeld-Nowak B, Bacia A, Grdkowska M, Fusco M, Vantini G, Leon A, Aloe L (1992) In vivo activated brain astrocytes may produce and secrete nerve growth factor-like molecules. Neurochem Int 21: 455–4561. https://doi.org/10.1016/0197-0186(92)90197-y
  22. Jauneau A, Ischenko A, Chatagner A, Benard M, Chan P, Schouft M, Patte C, Vaudry H, M (2006) Interleukin-1β and anaphylatoxins exert a synergistic effect on NGF expression by astrocytes. J Neuroinflammat 3: 8. https://doi.org/10.1186/1742-2094-3-8
  23. Heese K, Hock C, Otten U (1998) Inflammatory signals induce neurotrophin expression in human microglial cells. J Neurochem 70: 699–707. https://doi.org/10.1046/j.1471-4159.1998.70020699.x
  24. Ramirez JJ, Caldwell JL, Majure M, Wessner DR, Klein RL, Meyer EM, King MA (2003) Adeno-associated virus vector expressing nerve growth factor enhances cholinergic axonal sprouting after cortical injury in rats. J Neurosci 23: 2797–2803. https://doi.org/10.1523/JNEUROSCI.23-07-02797.2003
  25. Шанин СН, Фомичева ЕЕ, Филатенкова ТА, Серебряная НБ (2018) Коррекция нарушений нейроиммунных взаимодействий при экспериментальной черепно-мозговой травме препаратом рекомбинантного интерлейкина-2. Мед иммунол 20(2): 171–178. [Shanin SN, Fomicheva EE, Filatenkova TA, Serebryanaya NB (2018) Correction of disorders of neuroimmune interactions in experimental traumatic brain injury with a drug of recombinant interleukin-2. Med Immunol 20(2): 171–178. (In Russ)]. https://doi.org/10.15789/1563-0625-2018-2-171-178
  26. Якубовский АП, Жмайлик РР (2015) Метод проведения эфирного наркоза по закрытому контуру в эксперименте. Смоленск мед альманах № 1. [Yakubovsky AP, Zhmaylik RR (2015) Method of conducting ether anesthesia on a closed circuit in an experiment. Smolensk Med Almanac № 1. (In Russ)].
  27. Chen Y, Constantini S, Trembovler V, Weinstock M, Shohami E (1996) An experimental model of closed head injury in mice: pathophysiology, histopathology, and cognitive deficits. J Neurotrauma 13: 557–568. https://doi.org/10.1089/neu.1996.13.557
  28. Stahel PF, Shohami E, Younis FM, Kariya K, Otto VI, Lenzlinger PM, Grosjean MB, Eugster HP, Trentz O, Kossmann T, Morganti-Kossmann MC (2000) Experimental closed head injury: analysis of neurological outcome, blood-brain barrier dysfunction, intracranial neutrophil infiltration, and neuronal cell death in mice deficient in genes for pro-inflammatory cytokines. J Cereb Blood Flow Metab 20: 369–380. https://doi.org/10.1097/00004647-200002000-00019
  29. Leinhase I, Schmidt OI, Thurman JM, Hossini AM, Rozanski M, Taha ME, Scheffler A, John T, Smith WR, Holers VM, Stahel PF (2006) Pharmacological complement inhibition at the C3 convertase level promotes neuronal survival, neuroprotective intracerebral gene expression, and neurological outcome after traumatic brain injury. Exp Neurol 199: 454–464. https://doi.org/10.1016/j.expneurol.2006.01.033
  30. Yatsiv I, Grigoriadis N, Simeonidou C, Stahel PF, Schmidt OI, Alexandrovitch AG, Tsenter J, Shohami E (2005) Erythropoietin is neuroprotective, improves functional recovery, and reduces neuronal apoptosis and inflammation in a rodent model of experimental closed head injury. Faseb J 19: 1701–1703. https://doi.org/10.1096/fj.05-3907fje
  31. Yatsiv I, Morganti-Kossmann MC, Perez D, Dinarello CA, Novick D, Rubinstein M, Otto VI, Rancan M, Kossmann T, Redaelli CA, Trentz O, Shohami E, Stahel PF (2002) Elevated intracranial IL-18 in humans and mice after traumatic brain injury and evidence of neuroprotective effects of IL-18-binding protein after experimental closed head injury. J Cereb Blood Flow Metab 22: 971–978. https://doi.org/10.1097/00004647-200208000-00008
  32. Горбунов НП, Жахов АВ, Трофимов АВ, Некрасова КА, Родин СВ, Атанесян ЕА, Карабанова ЕА, Захаров МС, Симбирцев АС, Ищенко АМ (2019) Комплемент при патологиях, возможность коррекции с помощью нового гуманизированного антитела, блокирующего альтернативный путь. Рос иммунол журн 22(2–2): 754–756. [Gorbunov NP, Zhakhov AV, Trofimov AV, Nekrasova KA, Rodin SV, Atanesyan EA, Karabanova EA, Zakharov MS, Simbirtsev AS, Ishchenko AM (2019) Complement in pathologies, the possibility of correction with a new humanized antibody that blocks an alternative pathway. Russ Immunol J 22(2–2): 754–756. (In Russ)]. https://doi.org/10.31857/S102872210006712-8
  33. Фомичева ЕЕ, Шанин СН, Филатенкова ТА, Серебряная НБ (2020) IL-2 как регулятор уровней стресс-гормонов и нейротропного фактора BDNF при экспериментальной черепно-мозговой травме. Мед иммунол 22(4): 647–656. [Fomicheva EE, Shanin SN, Filatenkova TA, Serebryanaya NB (2020) IL-2 as a regulator of stress hormones and neurotropic factor BDNF in experimental traumatic brain injury. Med Immunol 22(4): 647–656. (In Russ)]. https://doi.org/10.15789/1563-0625-IAR-1973
  34. Joiner KA, Hawiger A, Gelfand J (1983) A study of optimal reaction conditions for an assay of the human alternative complement pathway. Am J Clin Pathol 79: 65–72. https://doi.org/10.1093/ajcp/79.1.65
  35. Буреш Я, Бурешова О, Хьюстон ДП (1991) Методики и основные эксперименты по изучению мозга и поведения. Ред. АС Батуев. М. Высш. шк. [Buresh Ya, Bureshova O, Houston DP (1991) Methods and basic experiments to study the brain and behavior. Ed. AC Batuev. M. Higher School. (In Russ)].
  36. Дмитриенко ЕВ, Акимото Н, Наое С, Нода М, Рыбакина ЕГ, Корнева ЕА (2013) Иммунная система мозга и черепно-мозговая травма: попытки коррекции. Мед акад журн 13(4): 7–19. [Dmitrienko EV, Akimoto N, Naoe S, Noda M, Rybakina EG, Korneva EA (2013) Immune system of the brain and traumatic brain injury: attempts at correction. Med Acad J 13(4): 7–19. (In Russ)].
  37. Rodney T, Osier N, Gill J (2018) Pro- and anti-inflammatory biomarkers and traumatic brain injury outcomes: A review. Cytokine 110: 248–256. https://doi.org/10.1016/j.cyto.2018.01.012
  38. Simi A, Tsakiri N, Wang P, Rothwell N (2007) Interleukin-1 and inflammatory neurodegeneration. Biochem Soc Trans 35(5): 1122–1126. https://doi.org/10.1042/BST0351122
  39. Фомичева ЕЕ, Шанин СН, Филатенкова ТА, Серебряная НБ (2019) Коррекция стресс-индуцированных гормональных изменений введением rIL-2 при экспериментальной черепно-мозговой травме. Мед акад журн 19(1S): 199–200. [Fomicheva EE, Shanin SN, Filatenkova TA, Serebryanaya NB (2019) Correction of stress-induced hormonal changes by the introduction of rIL-2 in experimental traumatic brain injury. Med Acad J 19(1S): 199–200. (In Russ)]. https://doi.org/10.15789/1563-0625-2018-2-171-178
  40. Scherer IJ, Holmes PV, Harris RB (2011) The importance of corticosterone in mediating restraint-induced weight loss in rats. Physiol Behav 102(2): 225–233. https://doi.org/10.1016/j.physbeh.2010.11.014
  41. Мураева НA (2019) Влияние хронического стресса на массу тела и иммунных органов экспериментальных животных раннего возраста. Волгоградск науч-мед журн 64(4): 3. [Muraeva NA (2019) Influence of chronic stress on body weight and immune organs of experimental animals of early age. Volgograd J Med Scient Res 64(4): 3. (In Russ)].
  42. Toutonji A, Mandava M, Guglietta S, Tomlinson S (2021) Chronic complement dysregulation drives neuroinflammation after traumatic brain injury: a transcriptomic study. Acta Neuropathol Commun 9(1): 126. https://doi.org/10.1186/s40478-021-01226-2
  43. Wang H, Chen J, Gao C, Chen W, Chen G, Zhang M, Luo C, Wang T, Chen X, Tao L (2021) TMT-based proteomics analysis to screen potential biomarkers of acute-phase TBI in rats. Life Sci 264: 118631. https://doi.org/10.1016/j.lfs.2020.118631
  44. Bao W, He F, Yu L, Gao J, Meng F, Ding Y, Zou H, Luo B (2018) Complement cascade on severe traumatic brain injury patients at the chronic unconscious stage: implication for pathogenesis. Expert Rev Mol Diagn 18: 761–766. https://doi.org/10.1080/14737159.2018.1471985
  45. Wang J, Hou Y, Zhang L, Liu M, Zhao J, Zhang Z, Ma Y, Hou W (2021) Estrogen Attenuates Traumatic Brain Injury by Inhibiting the Activation of Microglia and Astrocyte-Mediated Neuroinflammatory Responses. Mol Neurobiol 58(3): 1052–1061. https://doi.org/10.1007/s12035-020-02171-2
  46. Alawieh A, Chalhoub R, Mallah K, Langley EF, York M, Broome H, Couch C, Adkins D, Tomlinson S (2021) Complement drives synaptic degeneration and progressive cognitive decline in the chronic phase after traumatic brain injury. J Neurosci 41(8): 1830–1843. https://doi.org/10.1523/JNEUROSCI.1734-20.2020
  47. Rich MC, Keene CN, Neher MD, Johnson K, Yu Z-X, Ganivet A, Holers VM, Stahel PF (2016) Site-targeted complement inhibition by a complement receptor 2-conjugated inhibitor (mTT30) ameliorates post-injury neuropathology in mouse brains. Neurosci Lett 617: 188–194. https://doi.org/10.1016/j.neulet.2016.02.025
  48. Mercurio D, Oggioni M, Fumagalli S, Lynch NJ, Roscher S, Minuta D, Perego C, Ippati S, Wallis R, Schwaeble WJ, De Simoni M-G (2020) Targeted deletions of complement lectin pathway genes improve outcome in traumatic brain injury, with MASP-2 playing a major role. Acta Neuropathol Commun 8: 174. https://doi.org/10.1186/s40478-020-01041-1
  49. Fluiter K, Opperhuizen AL, Morgan BP, Baas F, Ramaglia V (2014) Inhibition of the membrane attack complex of the complement system reduces secondary neuroaxonal loss and promotes neurologic recovery after traumatic brain injury in mice. J Immunol 192: 2339–2348. https://doi.org/10.4049/jimmunol.1302793
  50. Leinhase I, Holers VM, Thurman JM, Harhausen D, Schmidt OI, Pietzcker M, Taha ME, Rittirsch D, Huber-Lang M, Smith WR, Ward PA, Stahel PF (2006) Reduced neuronal cell death after experimental brain injury in mice lacking a functional alternative pathway of complement activation. BMC Neurosci 7: 55. https://doi.org/10.1186/1471-2202-7-55
  51. Фомичева ЕЕ, Шанин СН, Филатенкова ТА, Новикова НС, Дятлова АС, Ищенко АМ, Серебряная НБ (2022) Коррекция нарушений поведенческих реакций и состояния микроглии рекомбинантным рецепторным антагонистом рецептора Il-1 при экспериментальной ЧМТ. Рос физиол журн им ИМ Сеченова 108(10): 1264–1278. [Fomicheva EE, Shanin SN, Filatenkova TA, Novikova NS, Dyatlova AS, Ishchenko AM, Serebryanaya NB (2022) Correction of behavioral disorders and microglial state with a recombinant Il-1 receptor antagonist in experimental TBI. Russ J Physiol 108(10): 1264–1278. (In Russ)]. https://doi.org/10.31857/50869813922100077
  52. Mallah K, Couch C, Alshareef M, Borucki D, Yang X, Alawieh A, Tomlinson S (2021) Complement mediates neuroinflammation and cognitive decline at extended chronic time points after traumatic brain injury. Acta Neuropathol Commun 9: 72. https://doi.org/10.1186/s40478-021-01179-6
  53. Longhi L, Perego C, Ortolano F, Zanier ER, Bianchi P, Stocchetti N, McIntosh TK, De Simoni MG (2009) C1-inhibitor attenuates neurobehavioral deficits and reduces contusion volume after controlled cortical impact brain injury in mice. Crit Care Med 37: 659–665. https://doi.org/10. 1097/CCM.0b013e318195998a

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (45KB)
3.

Baixar (57KB)
4.

Baixar (44KB)
5.

Baixar (50KB)
6.

Baixar (44KB)

Declaração de direitos autorais © Н.Б. Серебряная, Е.Е. Фомичева, С.Н. Шанин, Т.А. Филатенкова, А.В. Жахов, К.А. Некрасова, А.М. Ищенко, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies