The Impact of T- and L-Type Calcium Channels Blockers on Pulmonary Microhemodynamics in Experimental Model of Pulmonary Thromboembolism

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In acute experiments on isolated perfused rabbit’s Сhinchilla lungs changes of pulmonary microhemodynamics were studied in case of pulmonary embolization in the comparison group and after pretreatment with ethosuximide, mibefradil, chloroquine and nifedipine. In response to administration of T-type Ca2+-channel blockers ethosuximide and mibefradil, pulmonary artery pressure, precapillary and pulmonary vascular resistance decreased approximately to the same extent, postcapillary resistance did not change. After pretreatment with chloroquine pulmonary artery pressure, precapillary and pulmonary vascular resistance decreased more than in response to the administration of ethosuximide and mibefradil and the antagonist of L-type Ca2+-channels nifedipine; postcapillary resistance decreased. In the case of chloroquine administration combined with infusion of the KATP- channel blocker glibenclamide, most parameters of pulmonary microcirculation decreased almost to the same extent as in response to mibefradil administration, and postcapillary resistance did not change. After pretreatment with chloroquine in response to pulmonary embolization, pulmonary vascular resistance, pre- and postcapillary resistance increased less pronounced than with thromboembolism after pretreatment with ethosuximide, mibefradil and nifedipine. When modeling thromboembolism after pretreatment with chloroquine combined with KATP-channels blocker glibenclamide, the studied hemodynamics parameters increased to the same extent as after nifedipine pretreatment. Thus, chloroquine exhibits the properties of L- and T-type Ca2+-channels blocker, as well as an activator of KATP-channels, whereas ethosuximide has a blocking effect mainly on T-type Ca2+-channels of smooth muscle cells of pulmonary arterial vessels. Shifts of capillary filtration coefficient under these conditions depend more on changes of precapillary resistance than from the changes of permeability of endothelium of pulmonary vessels.

作者简介

V. Evlakhov

Institute of Experimental Medicine

编辑信件的主要联系方式.
Email: viespbru@mail.ru
Russia, St. Petersburg

I. Poyassov

Institute of Experimental Medicine

Email: viespbru@mail.ru
Russia, St. Petersburg

T. Berezina

Institute of Experimental Medicine

Email: viespbru@mail.ru
Russia, St. Petersburg

参考

  1. Konstantinides SV, Meyer G, Becattini C, Bueno H, Geersing GJ, Harjola VP, Huisman MV, Humbert M, Jennings CS, Jiménez D, Kucher N, Lang IM, Lankeit M, Lorusso R, Mazzolai L, Meneveau N, Ní Áinle F, Prandoni P, Pruszczyk P, Righini M, Torbicki A, Van Belle E, Zamorano JL (2020) 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS). Eur Heart J 41: 543–603. https://doi.org/10.1093/eurheartj/ehz405
  2. Lyhne MD, Kline JA, Nielsen-Kudsk JE, Andersen A (2020) Pulmonary vasodilation in acute pulmonary embolism – a systematic review. Pulm Circ 10: 2045894019899775. https://doi.org/10.1177/2045894019899775
  3. Li HH, Xie LJ, Xiao TT, Huang M, Shen J (2016) Mibefradil suppresses the proliferation of pulmonary artery smooth muscle cells. J Investig Med 64: 45–49. https://doi.org/10.1136/jim-d-15-00167
  4. Fernandes CJ, Luppino Assad AP, Alves-Jr JL, Jardim C, de Souza R (2019) Pulmonary Embolism and Gas Exchange. Respiration 98: 253–262. https://doi.org/10.1159/000501342
  5. Wan J, Yamamura A, Zimnicka AM, Voiriot G, Smith KA, Tang H, Ayon RJ, Choudhury MS, Ko EA, Wang J, Wang C, Makino A, Yuan JX (2013) Chronic hypoxia selectively enhances L- and T-type voltage-dependent Ca2+ channel activity in pulmonary artery by upregulating Cav1.2 and Cav3.2. Am J Physiol Lung Cell Mol Physiol 305: L154–L164. https://doi.org/10.1152/ajplung.00313.2012
  6. Chevalier M, Gilbert G, Roux E, Lory P, Marthan R, Savineau JP, Quignard JF (2014) T-type calcium channels are involved in hypoxic pulmonary hypertension. Cardiovasc Res 103: 597–606. https://doi.org/10.1093/cvr/cvu166
  7. Gilbert G, Courtois A, Dubois M, Cussac LA, Ducret T, Lory P, Marthan R, Savineau JP, Quignard JF (2017) T-type voltage gated calcium channels are involved in endothelium-dependent relaxation of mice pulmonary artery. Biochem Pharmacol 138: 61–72. https://doi.org/10.1016/j.bcp.2017.04.021
  8. Tamang HK, Yang RB, Song ZH, Hsu SC, Peng CC, Tung YC, Tzeng BH, Chen CC (2022) Cav3.2 T-type calcium channel regulates mouse platelet activation and arterial thrombosis. J Thromb Haemost 20: 1887–1899. https://doi.org/10.1111/jth.15745
  9. Zamponi GW, Striessnig J, Koschak A, Dolphin AC (2015) The Physiology, Pathology, and Pharmacology of Voltage-Gated CalciumChannels and Their Future Therapeutic Potential. Pharmacol Rev 67: 821–870. https://doi.org/10.1124/pr.114.009654
  10. Velkova K, Kristev A, Kostadinova I (1995) Effects of ethosuximide on the cerebral vasculature and hemodynamics of rats. Methods Find Exp Clin Pharmacol 17: 677–684.
  11. Wu K, Zhang Q, Wu X, Lu W, Tang H, Liang Z, Gu Y, Song S, Ayon RJ, Wang Z, McDermott KM, Balistrieri A, Wang C, Black SM, Garcia JGN, Makino A, Yuan JX, Wang J (2017) Chloroquine is a potent pulmonary vasodilator that attenuates hypoxia-induced pulmonary hypertension. Br J Pharmacol 463: 4155–4172. https://doi.org/10.1111/bph.13990
  12. Gadotti VM, Kreitinger JM, Wageling NB, Budke D, Diaz P, Zamponi GW (2020) Cav3.2 T-type calcium channels control acute itch in mice. Mol Brain 13(1): 119. https://doi.org/10.1186/s13041-020-00663-9
  13. Schreiber K, Sciascia S, Wehrmann F, Weiß C, Leipe J, Krämer BK, Stach KJ (2021) The effect of hydroxychloroquine on platelet activation in model experiments. J Thromb Thrombolysis 52: 674–679. https://doi.org/10.1007/s11239-020-02325-y
  14. Evlakhov VI, Poyassov IZ, Berezina TP (2022) Changes of Pulmonary Microhemodynamics in Experimental Pulmonary Thromboembolism after Pretreatment with K-Channel Activators. Bull Exp Biol Med 173: 302–305. https://doi.org/10.1007/s10517-022-05538-8
  15. Chen X, Patel K, Connors SG, Mendonca M, Welch WJ, Wilcox CS (2007) Acute antihypertensive action of Tempol in the spontaneously hypertensive rat. Am J Physiol Heart Circ Physiol 293: H3246–H3253. https://doi.org/10.1152/ajpheart.00957.2007
  16. Mifsud J, Collier PS, Millership JS (2001) The pharmacokinetics of ethosuximide enantiomers in the rat. Biopharm Drug Dispos 22: 83–89. https://doi.org/10.1002/bdd.266
  17. Honda M, Hayashi K, Matsuda H, Kubota E, Tokuyama H, Okubo K, Takamatsu I, Ozawa Y, Saruta TJ (2001) Divergent renal vasodilator action of L- and T-type calcium antagonists in vivo. Hypertension 19: 2031–2037. https://doi.org/10.1097/00004872-200111000-00014
  18. Alanne L, Bhide A, Hoffren J, Lantto J, Huhta H, Kokki M, Haapsamo M, Acharya G, Räsänen J (2020) Effects of nifedipine and sildenafil on placental hemodynamics and gas exchange during fetal hypoxemia in a chronic sheep model. Placenta 90: 103–108. https://doi.org/10.1016/j.placenta.2019.12.014
  19. Echizen H, Eichelbaum M (1986) Clinical pharmacokinetics of verapamil, nifedipine and diltiazem. Clin Pharmacokinet 11: 425–449. https://doi.org/10.2165/00003088-198611060-00002
  20. Skerjanec A, Tawfik S, Tam YK (1996) Nonlinear pharmacokinetics of mibefradil in the dog. J Pharm Sci 85: 189–192. https://doi.org/10.1021/js9501775
  21. Tsung YC, Chung CY, Wan HC, Chang YY, Shih PC, Hsu HS, Kao MC, Huang CJ (2017) Dimethyl Sulfoxide Attenuates Acute Lung Injury Induced by Hemorrhagic Shock/Resuscitation in Rats. Inflammation 40: 555–565. https://doi.org/10.1007/s10753-016-0502-4
  22. Gurtu S, Shukla S, Mukerjee D, Khattri S (2000) Effect of calcium channel blockers on baroreceptor reflex in anaesthetized cats. Pharmacol Res 42: 101–105. https://doi.org/10.1006/phrs.2000.0659
  23. Chen LY, Cheng CW, Liang JY (2015) Effect of esterification condensation on the Folin-Ciocalteu method for the quantitative measurement of total phenols. Food Chem 170: 10–15. https://doi.org/10.1016/j.foodchem.2014.08.038
  24. Evlakhov VI, Berezina TP, Poyassov IZ, Ovsyannikov VI (2021) Pulmonary Microcirculation during Experimental Pulmonary Thromboembolism under Conditions of Activation and Blockade of Muscarinic Acetylcholine Receptors. Bull Exp Biol Med 171: 198–201. https://doi.org/10.1007/s10517-021-05194-4
  25. Göthert M, Molderings GJ (1997) Mibefradil- and omega-conotoxin GVIA-induced inhibition of noradrenaline release from the sympathetic nerves of the human heart. Naunyn Schmiedebergs Arch Pharmacol 356: 860–863. https://doi.org/10.1007/pl00005130
  26. Bardou M, Goirand F, Marchand S, Rouget C, Devillier P, Dumas JP, Morcillo EJ, Rochette L, Dumas MJ (2001) Hypoxic vasoconstriction of rat main pulmonary artery: role of endogenous nitric oxide, potassium channels, and phosphodiesterase inhibition. Cardiovasc Pharmacol 38: 325–334. https://doi.org/10.1097/00005344-200108000-00018
  27. Breen E, Yuan JX (2022) Targeting ATP-Sensitive K+ Channels to Treat Pulmonary Hypertension. Am J Respir Cell Mol Biol 66: 476–478. https://doi.org/10.1165/rcmb.2021-0549ED
  28. Wei MY, Xue L, Tan L, Sai WB, Liu XC, Jiang QJ, Shen J, Peng YB, Zhao P, Yu MF, Chen W, Ma LQ, Zhai K, Zou C, Guo D, Qin G, Zheng YM, Wang YX, Ji G, Liu QH (2015) Involvement of large-conductance Ca2+-activated K+-channels in chloroquine-induced force alterations in pre-contracted airway smooth muscle. PLoS One 10: e0121566. https://doi.org/10.1371/journal.pone.0121566
  29. Ostadhadi S, Foroutan A, Haddadi NS, Norouzi-Javidan A, Momeny M, Zarrinrad G, Ghaffari SH, Dehpour AR (2017) Pharmacological evidence for the involvement of adenosine triphosphate sensitive potassium channels in chloroquine-induced itch in mice. Pharmacol Rep 69: 1295–1299. https://doi.org/10.1016/j.pharep.2017.05.021
  30. Molderings GJ, Likungu J, Göthert M (2000) N-Type calcium channels control sympathetic neurotransmission in human heart atrium. Circulation 101: 403–407. https://doi.org/10.1161/01.cir.101.4.403
  31. Uhrenholt TR, Nedergaard OA (2003) Calcium channels involved in noradrenaline release from sympathetic neurones in rabbit carotid artery. Pharmacol Toxicol 92: 226–233. https://doi.org/10.1034/j.1600-0773.2003.920505.x
  32. Wu CY, Lee RH, Chen PY, Tsai AP, Chen MF, Kuo JS, Lee TJ (2014) L-type calcium channels in sympathetic α3β2-nAChR-mediated cerebral nitrergic neurogenic vasodilation. Acta Physiol (Oxf) 211: 544–558. https://doi.org/10.1111/apha.12315
  33. Huang KL, Lin YC (1997) Pharmacologic modulation of pulmonary vascular permeability during air embolism. Undersea Hyperb Med 24: 315–321. PMID: 9444063
  34. Townsley MI, King JA, Alvarez DF (2006) Ca2+-channels and pulmonary endothelial permeability: insights from study of intact lung and chronic pulmonary hypertension. Microcirculation 13: 725–739. https://doi.org/10.1080/10739680600930362

补充文件

附件文件
动作
1. JATS XML
2.

下载 (45KB)

版权所有 © В.И. Евлахов, И.З. Поясов, Т.П. Березина, 2023

##common.cookie##