Recovery of the Functional Activity of KATP-Channels of Pial Arteries after Ischemia/Reperfusion Using Cell Therapy

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

This study aims to examine the efficiency of intravenous transplantation of human mesenchymal stem cells (hMSCs) performed 7 days after cerebral ischemia/reperfusion (I/R) for recovery of the functional activity of KATP-channels of cerebral arteries. Using a device for intravital visualization of pial vessels, the reaction of arteries to the KATP-channel blocker glibenclamide (GB), the activator of the same channels of pinacidil (PI), acetylcholine (ACh), and ACh against a background of GB action (ACh/GB) 14 and 21 days after I/R and intravenous hMSC transplantation performed 7 days after ischemic exposure. On exposure to GB 14 days after I/R, 1.5–1.8 times fewer arteries narrowed than in the sham–operated (SO) rats. By day 21 after I/R, the constriction reaction was completely restored, except for arteries with a diameter more 40 μm. In the cell–therapy group, the constrictor response to GB was completely recovered to the level of SO animals in arteries with a diameter less than 40 μm by 14 day after I/R exposure; in arteries with a diameter of more than 40 μm, the constriction reaction did not recover until 21 days. The number of dilations per ACh/GB compared to a clear ACh in SO rats was reduced in 1.6–1.8 times on 14 day after I/R and in 1.6–6.6 after 21 days. In I/R animals on 14 day, the number of dilatations per ACh/GB compared to clear ACh was significantly increased in arteries with a diameter of more than 20 μm by 1.5–1.7 times, and after 21 days in arteries with a diameter of more than 40 μm by 1.2 times. After the introduction of hMSC, GB blocked ACh–mediated dilation in arteries less than 40 μm in diameter both on days 14 and 21 after I/R. In arteries with a diameter of more than 40 μm the functional activity of KATP-channels did not recover until 21 days. Conclusion. I/R of the rat cerebral cortex reduces the contribution of KATP-channels to maintaining the basal tone of the pial arteries and almost completely excludes these channels from the formation of ACh–mediated dilation during 21 days of the postischemic period. Practically did not participate in the dilatory response. Intravenous transplantation of hMSC, performed 7 days after I/R, results in restoration of participation of SMC KATP-channels in maintaining the basal tone and ACh–mediated dilatation of pial arteries with a diameter less than 40 μm already 14 days after I/R.

作者简介

I. Sokolova

Pavlov Institute of Physiology, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: SokolovaIB@infran.ru
Russia, St. Petersburg

O. Gorshkova

Pavlov Institute of Physiology, Russian Academy of Sciences

Email: SokolovaIB@infran.ru
Russia, St. Petersburg

参考

  1. Gong S, Ma H, Zheng F, Huang J, Zhang Y, Yu B, Li F, Kou J (2021) Inhibiting YAP in endothelial cells from entering the nucleus attenuates blood-brain barrier damage during ischemia-reperfusion injury. Front Pharmacol 26(12): 777680. https://doi.org/10.3389/fphar.2021.777680
  2. Chen Y-J, Chen C, Li M-Y, Li Q-Q, Zhang X-J, Huang R, Zhu X-W, Bai C-Y, Liu-Yi Zhang, Peng P-H, Yang W-M (2021) Scutellarin reduces cerebral ischemia reperfusion injury involving in vascular endothelium protection and PKG signal. Nat Prod Bioprospect 11(6): 659–670. https://doi.org/10.1007/s13659-021-00322-z
  3. Ferdous A, Janta RA, Arpa RN, Afroze M, Khan M, Moniruzzaman M (2020) The leaves of Bougainvillea spectabilis suppressed inflammation and nociception in vivo through the modulation of glutamatergic, cGMP, and ATP-sensitive K+ channel pathways. J Ethnopharmacol 28(261): 113148. https://doi.org/10.1016/j.jep.2020.113148
  4. Tykocki NR, Boerman EM, Jackson WF (2017) Smooth muscle ion channels and regulation of vascular tone in resistance. Arteries and Arterioles. Compr Physiol 7(2): 485–581. https://doi.org/10.1002/cphy.c160011
  5. Syed AU, Koide M, Brayden JE, Wellman GC (2019) Tonic regulation of middle meningeal artery diameter by ATP-sensitive potassium channels. J Cereb Blood Flow Metab 39(4): 670–679. https://doi.org/10.1177/0271678X17749392
  6. Ning K, Jiang L, Hu T, Wang X, Liu A, Bao Y (2020) ATP-sensitive potassium channels mediate the cardioprotective effect of Panax notoginseng Saponins against myocardial ischaemia-reperfusion injury and inflammatory reaction. Biomed Res Int 2020: 3039184. https://doi.org/10.1155/2020/3039184
  7. Maqoud F, Scala R, Hoxha M, Zappacosta B, Tricarico D (2022) ATP-sensitive potassium channel subunits in neuroinflammation: novel drug targets in neurodegenerative disorders. CNS Neurol Disord Drug Targets 21(2): 130–149. https://doi.org/10.2174/1871527320666210119095626
  8. Shi Y, Wang Y, Li Q, Liu K, Hou J, Shao C, Ying Wang Y (2018) Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases. Nat Rev Nephrol 14(8): 493–507. https://doi.org/10.1038/s41581-018-0023-5
  9. Lin Q-M, Tang X-H, Lin S-R, Chen B-D, Feng Chen F (2020) Bone marrow-derived mesenchymal stem cell transplantation attenuates overexpression of inflammatory mediators in rat brain after cardiopulmonary resuscitation. Neural Regen Res 15(2): 324–331. https://doi.org/10.4103/1673-5374.265563
  10. Liu Y, Zhao Y, Min Y, Guo K, Chen Y, Huang Z, Long C (2022) Effects and mechanisms of bone marrow mesenchymal stem cell transplantation for treatment of ischemic stroke in hypertensive rats. Int J Stem Cells 15(2): 217–226. https://doi.org/10.15283/ijsc21136
  11. Xiao X, Xu M, Yu H, Wang L, Li X, Rak J, Wang S, Zhao RC (2021) Mesenchymal stem cell-derived small extracellular vesicles mitigate oxidative stress-induced senescence in endothelial cells via regulation of miR-146a/Src. Signal Transduct Target Ther 6(1): 54. https://doi.org/10.1038/s41392-021-00765-3
  12. Sheikh A, Yano S, Mitaki S, Haque MDA, Yamaguchi S, Nagai A (2019) A mesenchymal stem cells line (B10) increases angiogenesise in rat MCAO model. Exp Neurol 311: 182. https://doi.org/10.1016/j.expneurol.2018.10.001
  13. Dong H-J, Peng D, Luo Y, Liu R, Yin H-J, Lei Wang L, Hong Sha H, Meng H-P, Ping W, Shang C (2022) The hope for Pandora’s Box: mesenchymal stem cells for promoting angiogenesis in stroke and traumatic brain injury. Signal Transduct Target Ther 6(1): 354. https://doi.org/10.1038/s41392-021-00765-3
  14. Egger D, Lavrentieva A, Kugelmeier P, Cornelia Kasper C (2021) Physiologic isolation and expansion of human mesenchymal stem/stromal cells for manufacturing of cell-based therapy products. Eng Life Sci 22(3–4): 361–372. https://doi.org/10.1002/elsc.202100097
  15. Kangussu LM, Almeida-Santos AF, Fernandes L, Alenina N, Bader M, Santos R, Massensini A, Campagnole-Santos J (2023) Transgenic rat with overproduction of ubiquitous angiotensin-(1–7) presents neuroprotection in a model of ischemia and reperfusion. Brain Res Bull 192: 184–191. https://doi.org/10.1016/j.brainresbull.2022.11.017
  16. Lee SH, Choung JS, Kim JM, Kim H, Kim MY (2023) Distribution of embryonic stem cell-derived mesenchymal stem cells after intravenous infusion in hypoxic-ischemic encephalopathy. Life (Basel) 13(1): 227. https://doi.org/10.3390/life13010227
  17. Lensman M, Korzhevskii DE, Mourovets VO, Kostkin VB, Izvarina N, Perasso L, Gandolfo C, Otellin VA, Polenov SA, Balestrino M (2006). Intracerebroventricular administration of creatine protects against damage by global cerebral ischemia in rat. Brain Res 1114(1): 187–194. https://doi.org/10.1016/j.brainres.2006.06.103
  18. Mushahary D, Spittler A, Kasper C, Weber V, Charwat V (2018) Isolation, cultivation, and characterization of human mesenchymal stem cells expand. Cytometry A 93(1): 19–31. https://doi.org/10.1002/cyto.a.23242
  19. Soltani N, Mohammadi E, Allahtavakoli M, Shamsizadeh A, Roohbakhsh A, Haghparast A (2016) Effects of dimethyl sulfoxid on neuronal response characteristics in deep layers of rat barrel cortex. Basic Clin Neurosci 7(3): 213–220. https://doi.org/10.15412/J.BCN.03070306
  20. Sancho M, Fletcher J, Welsh DG (2022) Inward rectifier potassium channels: membrane lipid-dependent mechanosensitive gates in brain vascular cells. Front Cardiovasc Med 9: 869481. https://doi.org/10.3389/fcvm.2022.869481
  21. Zeidner G, Sadja R, Reuveny E (2001) Redox-dependent gating of G protein-coupled inwardly rectifying K+ channels. J Biol Chem 276(38): 35564–35570. https://doi.org/10.1074/jbc.M105189200
  22. Syed AU, Koide M, Brayden JE, Wellman G (2019) Tonic regulation of middle meningeal artery diameter by ATP-sensitive potassium channels. Journal of Cerebral Blood Flow and Metabolism 39(4): 670–679. https://doi.org/10.1177/0271678X17749392
  23. Jackson WF (2021) Myogenic tone in peripheral resistance arteries and arterioles: The Pressure Is On! Front Physiol 12: 699517. https://doi.org/10.3389/fphys.2021.699517
  24. Jha RM, Rani A, Desai SM, Raikwar S, Mihaljevic S, Munoz-Casabella A, Kochanek PM, Catapano J, Winkler E, Citerio G, Hemphill JC, Kimberly WT, Narayan R, Sahuquillo J, Sheth KN, Simard JM (2021) Sulfonylurea receptor 1 in central nervous system injury: an updated review. Int J Mol Sci 22(21): 11899. https://doi.org/10.3390/ijms222111899
  25. Sancho M, Fletcher J, Welsh DG (2022) Inward rectifier potassium channels: membrane lipid-dependent mechanosensitive gates in brain vascular cells. Front Cardiovasc Med 9: 869481. https://doi.org/10.3389/fcvm.2022.869481
  26. Kang P, Ying C, Chen Y, Ford AL, An H, Lee J-M (2022) Oxygen metabolic stress and white matter injury in patients with cerebral small vessel disease. Stroke 53(5): 1570–1579. https://doi.org/10.1161/STROKEAHA.121.035674
  27. Liu K, Guo L, Zhou Z, Pan M, Yan C (2019) Mesenchymal stem cells transfer mitochondria into cerebral microvasculature and promote recovery from ischemic stroke. Microvasc Res 123: 74–80. https://doi.org/10.1016/j.mvr.2019.01.001
  28. Busija DW, Katakam PV (2014) Mitochondrial mechanisms in cerebral vascular control: shared signaling pathways with preconditioning. J Vasc Res 51(3): 175–189. https://doi.org/10.1159/000360765
  29. Xu W, Xu R, Li Z, Wang Y, Hu R (2019) Hypoxia changes chemotaxis behaviour of mesenchymal stem cells via HIF-1α signaling. J Cell Mol Med 23(3): 1899–1907. https://doi.org/10.1111/jcmm.14091
  30. Han Y, Yang J, Fang J, Zhou Y, Candi E, Wang J, Hua D, Shao C, Yufang Shi Y (2022) The secretion profile of mesenchymal stem cells and potential applications in treating human diseases. Signal Transduct Target Ther 7(1): 92. https://doi.org/10.1038/s41392-022-00932-0
  31. Guo Y, Peng Y, Zeng H, Gao Chen G (2021) Progress in mesenchymal stem cell therapy for ischemic stroke. Stem Cells Int 2021: 9923566. https://doi.org/. eCollection 2021https://doi.org/10.1155/2021/9923566
  32. Gao Y, Chen H, Cang X, Chen H, Di Y, Qi J, Cai H, Luo K, Jin S (2022) Transplanted hair follicle mesenchymal stem cells alleviated small intestinal ischemia-reperfusion injury via intrinsic and paracrine mechanisms in a rat model. Front Cell Dev Biol 10: 1016597. https://doi.org/10.3389/fcell.2022.1016597
  33. Korkmaz-Icöz S, Zhou P, Guo Y, Loganathan S, Brlecic P, Radovits T, Sayour AA, Ruppert M, Veres G, Karck M, Szabó G (2021) Mesenchymal stem cell-derived conditioned medium protects vascular grafts of brain-dead rats against in vitro ischemia/reperfusion injury. Stem Cell Res Ther 12(1): 144. https://doi.org/10.1186/s13287-021-02166-3
  34. Liu Y, Chen J, Liang H, Cai Y, Li X, Yan L, Zhou L, Shan L, Wang H (2022) Human umbilical cord-derived mesenchymal stem cells not only ameliorate blood glucose but also protect vascular endothelium from diabetic damage through a paracrine mechanism mediated by MAPK/ERK signaling. Stem Cell Res Ther 13(1): 258. https://doi.org/10.1186/s13287-022-02927-8

补充文件

附件文件
动作
1. JATS XML
2.

下载 (357KB)
3.

下载 (464KB)
4.

下载 (432KB)
5.

下载 (212KB)

版权所有 © И.Б. Соколова, О.П. Горшкова, 2023

##common.cookie##