Analysis of the Elemental Composition of Gonads, Gametes and Larvae of the Mussel Mytilus galloprovincialis in the Spawning Period

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

In this work, we studied the elemental composition of gonads, eggs, sperm and larvae of the mussel Mytilus galloprovincialis during spawning, when the contents of biologically active compounds and minerals are maximal. A comparative analysis of the contents showed that the elements are involved in the mussel gametogenesis in different pathways. There were significant differences in the contents of Li, B, Mg, Si, P, K, Ca, V, Cr, Mn, Fe, Co, Ni, Zn, Ge, As, Se, Br, Rb, Sr, Mo, Pd, Sn, I, Ba and Ce in male and female gonads before and after spawning, gametes and larvae of mussels. It is likely that some of the listed elements are not only passively accumulated in the mollusk body, but are also essential, being directly involved in the reproduction process. Most of significant differences in the element contents were found between eggs and larvae and between male gonads before spawning and sperm. By spawning, mussel gonads accumulated mainly p- and d-elements, apparently due to the ability of their ions to form complexes and, consequently, to be included in the structure of enzymes. The contents of B, Mg, Si, P, K, Ca, Cr, Mn, Fe, Cu, Zn, As, Se, Br, Sr and Ba in male and female gonads, gametes and larvae were an order or several orders of magnitude higher than those of other elements. The contents of Ca, Fe, Sr, Sn and I in mussel larvae were significantly higher than in gonads and gametes. Sn is a technological hydropollutant, and thus, larvae can serve as a bioindicator of the aquatic environment pollution with this element. The data obtained are of practical interest for improving the biotechnology of reproduction of marine hydrobionts and obtaining functional products based on them, which is important for the optimization of aquaculture management and for addressing human health-related issues.

Авторлар туралы

L. Kapranova

Kovalevsky Institute of Biology of the Southern Seas of RAS

Хат алмасуға жауапты Автор.
Email: lar_sa1980@mail.ru
Russia, Sevastopol

V. Ryabushko

Kovalevsky Institute of Biology of the Southern Seas of RAS

Email: lar_sa1980@mail.ru
Russia, Sevastopol

S. Kapranov

Kovalevsky Institute of Biology of the Southern Seas of RAS

Email: lar_sa1980@mail.ru
Russia, Sevastopol

Әдебиет тізімі

  1. Kapranova LL, Ryabushko VI, Kapranov SV, Lishaev VN, Nekhoroshev MV (2021) Elemental composition of gonads, gametes and larvae in black and brown morphs of the Bivalve Mollusk Mytilus galloprovincialis LAM. J Evol Biochem Physiol 57(6): 1290–1299. https://doi.org/10.1134/S0022093021060090
  2. Wang W-X (2002) Interactions of trace metals and different marine food chains. Marine Ecol Progr Series 243: 295–309. https://doi.org/10.3354/meps243295
  3. Ezgeta-Balic D, Najdek M, Peharda M, Blazina M (2012) Seasonal fatty acid profile analysis to trace origin of food sources of four commercially important bivalves. Aquaculture 334–337: 89–100. https://doi.org/10.1016/j.aquaculture.2011.12.041
  4. Ndiaye B, Ndiaye M, Cid B, Diop A, Diagne I, Cisse D, Dione C, Hanne M (2020) Trace metals in Mussels Mytilus galloprovincialis from Dakar Coast (Senegal). Am J Analyt Chem 11(3): 137–145. https://doi.org/10.4236/ajac.2020.113011
  5. Крепс ЕМ (ред) (1982) Физиология животных. Приспособление и среда. М. Мир [Kreps ЕM (red) (1982) Animal physiology. Adaptation and environment. M. Mir. (In Russ)].
  6. Newton TJ (1995) A review of the effects of heavy metals on freshwater mussels. Ecotoxicology 4(6): 341–362. https://doi.org/10.1007/BF00118870
  7. Kapranov SV, Karavantseva NV, Bobko NI, Ryabushko VI, Kapranova LL (2021) Sex- and sexual maturation-related aspects of the element accumulation in soft tissues of the bivalve Mytilus galloprovincialis Lam. collected off coasts of Sevastopol (southwestern Crimea, Black Sea). Environment Sci Pollut Res 28(17): 21553–21576. https://doi.org/10.1007/s11356-020-12024-z
  8. Gupta SK, Singh J (2011) Evaluation of mollusc as sensitive indicatior of heavy metal pollution in aquatic system: a review. IIOAB J 2(1): 49–57.
  9. Nikonova LL, Nekhoroshev MV, Ryabushko VI (2017) Total testosterone and estradiol in the gonads and gametes of the mussel Mytilus galloprovincialis Lam. J Evol Biochem Physiol 53(6): 519–522. https://doi.org/10.1134/S0022093017060114
  10. Richir J, Gobert S (2014) The effect of size, weight, body compartment, sex and reproductive status on the bioaccumulation of 19 trace elements in rope-grown Mytilus galloprovincialis. Ecol Indicat 36: 33–47. https://doi.org/10.101/j.ecolind.2013.06.021
  11. Horne BA (1969) Marine Chemistry: The structure of water and the chemistry of the hydrosphere. Wiley. New York. https://doi.org/10.1007/s10311-011-0343-1
  12. Castruita M, Casero D, Karpowicz SJ, Kropat J, Vieler A, Hsieh SI, Yan W, Cokus S, Loo JA, Benning C, Pellegrini M, Merchant SS (2011) Systems biology approach in Chlamydomonas reveals connections between copper nutrition and multiple metabolic steps. Plant Cell 23: 1273–1292. https://doi.org/10.1105/tpc.111.084400
  13. Andrés-Colás N, Sancenón V, Rodriguez-Navarro S, Mayo S, Thiele DJ, Ecker JR, Puig S, Peñarrubia L (2006) The Arabidopsis heavy metal P-type ATPase HMA5 interacts with metallochaperones and functions in copper detoxification of roots. Plant J 45: 225–236. https://doi.org/10.1111/J.1365-313X.2005.02601.X
  14. Burkhead JL, Reynolds KA, Abdel-Ghany SE, Cohu CM, Pilon M (2009) Copper homeostasis. New Phytologist 182: 799–816. https://doi.org/10.1111/j.1469-8137.2009.02846.x
  15. Page MD, Kropat J, Hamel PP, Merchant S (2009) Two Chlamydomonas CTR Copper Transporters with a Novel Cys-Met Motif Are Localized to the Plasma Membrane and Function in Copper Assimilation. Plant Cell 21: 928–943. https://doi.org/10.1105/tpc.108.064907
  16. Wang D, Simons SS Jr (2005) Corepressor binding to progesterone and glucocorticoid receptors involves the activation function-1 domain and is inhibited by molybdate. Mol Endocrinol 19(6): 1483–1500. https://doi.org/10.1210/me.2005-0012
  17. Earnshaw MJ, Wilson S, Akberali HB, Marriott KRM (1986) The action of heavy metals on the gametes of the marine mussel, Mytilus edulis (L.) – III. The effect of applied copper and zinc on sperm motilityin relation to ultrastructural damage and intracellular metal localization. Marine Environment Res 20(4): 261–278. https://doi.org/10.1016/0141-1136(86)90052-8
  18. Akberali HB, Earnshaw MJ, Marriott KRM (1984) The action of heavy metals on the gametes of the marine mussel, Mytilus edulis (L.) – I. Copper-induced uncoupling of respiration in the unfertilized egg. Compar Biochem Physiolol 77C(2): 289–294. https://doi.org/10.1016/0742-8413(84)90015-x
  19. Akberali HB, Earnshaw MJ, Marriott KRM (1985) The action of heavy metals on the gametes of the marine mussel, Mytilus edulis (L.) – II. Uptake of copper and zinc and their effect on respiration in the sperm and unfertilized egg. Marine Environment Res 16(1): 37–59. https://doi.org/10.1016/0141-1136(85)90019-4
  20. Fitzpatrick JL, Nadella S, Bucking C, Balshine S, Wood CM (2008) The relative sensitivity of sperm, eggs and embryos to copper in the blue mussel (Mytilus trossulus). Compar Biochem Physiol 147(4): 441–449. https://doi.org/10.1016/j.cbpc.2008.01.012
  21. Chan GSL, Tan LYY (2013) Development of a toxicity bioassay using fertilisation in the green mussel, Perna viridis, from exposure to copper and cadmium. Asian Youth J Biol 1: 1–12.
  22. Seeler JF, Ajay S, Zaluzec NJ, Bleher R, Lai B, Schultz EG, Hoffman BM, LaBonne C, Woodruff TK, O’Halloran TV (2021) Metal ion fluxes controlling amphibian fertilization. Nature Chem 13: 683–691. https://doi.org/10.1038/s41557-021-00705-2
  23. Ahsan U, Kamran Z, Raza I, Ahmad S, Babar W, Riaz MH, Iqbalb Z (2014) Role of selenium in male reproduction – a review. Animal Reprod Sci 146(1–2): 55–62. https://doi.org/10.1016/j.anireprosci.2014.01.009
  24. Bezuidenhout J, Dames N, Botha A, Frontasyeva MV, Goryainova ZI, Pavlov D (2015) Trace elements in mediterranean mussels Mytilus galloprovincialis from the South African West coast. Ecol Chem Engineer Soc 22(4): 489–498.
  25. Liu F, Wang W-X (2015) Linking trace element variations with macronutrients and major cations in marine mussels Mytilus edulis and Perna viridis. Environment Toxicol Chem 34(9): 2041– 2050. https://doi.org/10.1002/etc.3027
  26. Христофорова НК (ред) (1994) Тяжелые металлы в промысловых и культивируемых моллюсках залива Петра Великого. Владивосток. Дальнаука. [Khristoforova NK (red) (1994) heavy metals in commercial and cultivated mollusks in the Peter the Great Bay. Vladivostok. Dal-nauka. (In Russ)].
  27. Kapranova LL, Nekhoroshev MV, Malakhova LV, Ryabushko VI, Kapranov SV, Kuznetsova TV (2019) Fatty acid composition of gonads and gametes in the Black Sea Bivalve Mollusk Mytilus galloprovincialis Lam. at different stages of sexual maturation. J Evol Biochem Physiol 55(6): 448–455. https://doi.org/10.1134/S0022093019060024
  28. Ho HC, Suarez SS (2003) Characterization of the intracellular calciumstore at the base of the sperm flagellum that regulates hyperactivated motility. Biol Reprod 68: 1590–1596. https://doi.org/10.1095/biolreprod.102.011320
  29. Chelyadina NS, Kapranov SV, Popov MA, Smirnova LL, Bobko NI (2022) Trace elements in the detoxifying and accumulating body parts of Mytilus galloprovincialis Lamark, 1819 (Crimea, Black Sea): human health risks and effect of the sampling site location. Environment Sci Pollut Res 29(40): 61352–61369. https://doi.org/10.1007/s11356-022-20186-1
  30. Amelar RD, Dubin L, Schoenfeld CY (1980) Sperm motility. Fertility and Sterility 34(3): 197–215. https://doi.org/10.1016/s0015-0282(16)44949-6
  31. Guillermo SN, Ammassari LL, Néstor G, Basso NG, Ronco AE (2006) Acute and chronic effects of Cr(VI) on Hypsiboas pulchellus embryos and tadpoles. PubMed 72(3): 61–67. https://doi.org/10.3354/dao072261
  32. Chalkiadakis O, Paraskevopoulou V, Roussos I, Dassenakis M, Simantiris LN (2013) Comparative study of the accumulation of Ni in different tissues of mussels and soft clams. E3S Web Conf 1: 11003. https://doi. org/10. 1051/e3sco nf/ 20130 111003
  33. Shwarz K, Milne DB (1971) Growth effects of vanadium in the rat. Science 174: 426–428.
  34. Kumar V, Sinha AK, Rodrigues PP, Mubiana VK, Blust R, De Boeck G (2015) Linking environmental heavy metal concentrations and salinity gradients with metal accumulation and their effects: a case study in 3 mussel species of Vitoria estuary and Espirito Santo bay, Southeast Brazil. Sci Total Environment 523: 1–15. https://doi.org/10.1016/j.scitotenv.2015.03.139

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (389KB)
3.

Жүктеу (47KB)

© Л.Л. Капранова, В.И. Рябушко, С.В. Капранов, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>