Neurophysiological Approaches for Temporal Sound Analysis in the Mouse Auditory Midbrain Neurons

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The dynamics of the response patterns of the mouse auditory midbrain single neurons in the whole neuronal excitatory receptive field was studied by the extracellular recordings of the pulse activity of neurons. The obtained data showed that the V-shaped neurons demonstrated the highest stability of their responses among the whole population of ICC neurons. The discharges of both primary-like and inhibition-dominated neurons were more variable and their variations more likely followed the changes of the sound frequency and intensity. Changes of the discharge pattern of the vast majority of studied neurons occurred 1/3–1/2 octave away the neuronal CF in the direction of both the low-frequency and high-frequency borders of the neural FRA. The results of present study are discussed taking into account the available data about the formation of IC neurons response due the interaction of the excitatory and inhibitory processes mediated by the activation of different types of cellular glutamate and GABA receptors.

Sobre autores

G. Khorunzhii

Sechenov Institute of Evolutionary Physiology and Biochemistry Russian Academy of Sciences

Email: ema6913@yandex.ru
Russia, Saint Petersburg

M. Egorova

Sechenov Institute of Evolutionary Physiology and Biochemistry Russian Academy of Sciences

Autor responsável pela correspondência
Email: ema6913@yandex.ru
Russia, Saint Petersburg

Bibliografia

  1. Гершуни ГВ (1967) О механизмах слуха (в связи с исследованием временных и временно-частотных характеристик слуховой системы). Механизмы слуха. Пробл физиол акустики 5(6): 3–32. [Gershuni GV (1967) On the mechanisms of hearing (in connection with the study of temporal and temporal-frequency characteristics of the auditory system). Mechanisms of hearing. Probl Physiol Acoust 5(6): 3–32. (In Russ)].
  2. Гершуни ГВ, Альтман ЯА, Вартанян ИА, Марусева АМ, Радионова ЕА, Ратникова ГИ (1969) О функциональной классификации нейронов слухового отдела четверохолмия кошки по временным характеристикам. Нейрофизиология 1(2): 137–146. [Gersuni GV, Altman JA, Vartanian IA, Maruseva AM, Radionova EA, Ratnikova GI (1969) Functional classification of the neurons of the inferior colliculi in the cat based on their temporal properties. Neirofiziologia 1(2): 137–146. (In Russ)].
  3. Gersuni GV (ed) (1971) Temporal organization of the auditory function. In: Sensory processes at the neuronal and behavioral levels. NY-London. Acad Press. 85–114.
  4. Ehret G, Moffat AJM (1985) Inferior colliculus of the house mouse. II. Single unit responses to tones, noise and tone-noise combinations as a function of sound intensity. J Comp Physiol 156: 619–635. https://link.springer.com/article/10.1007/BF00619111
  5. Ehret G, Fischer R (1991) Neuronal activity and tonotopy in the auditory system visualized by c-fos gene expression. Brain Res 567: 350–354. https://doi.org/10.1016/0006-8993(91)90819-H
  6. Ehret G (1997) The auditory midbrain, a “shunting yard” of acoustical information processing In: G Ehret and R Romand (Eds) The Central Auditory System. Oxford Univer Press. New York. 259–316.
  7. Egorova M, Ehret G, Vartanian I, Esser K-H (2001) Frequency response areas of neurons in the mouse inferior colliculus. I. Threshold and tuning characteristics. Exp Brain Res 140: 145–161.https://doi.org/10.1007/s002210100786
  8. Vartanian IA, Egorova MA, Ehret G (2000) Critical Bandwidths of Different Types of Neurons in the Mouse Auditory Midbrain. Dokl Biol Sci 373(5): 701–703.
  9. Ehret G, Merzenich MM (1988) Neuronal discharge rate is unsuitable for encoding sound intensity at the inferior colliculus level. Hear Res 35: 1–8. https://doi.org/10.1016/0378-5955(88)90035-4
  10. Егорова МА (2008) Временные свойства импульсной активности одиночных нейронов задних холмов мыши. Сенсорн сист 22(3): 203–213. [Egorova MA (2008) The temporal properties of activity of the mouse inferior colliculus single neurons. Sensorn Sist 22(3): 203–213. (In Russ)].
  11. Egorova MA (2008) Peculiarities of time patterns of discharges of single auditory neurons of mouse inferior colliculi. J Evol Biochem Physiol 44(5): 637. https://doi.org/10.1134/S0022093008050149
  12. Egorova MA, Akimov AG, Khorunzhii GD, Ehret G (2020) Frequency response areas of neurons in the mouse inferior colliculus. III. Time-domain responses: Constancy, dynamics, and precision in relation to spectral resolution, and perception in the time domain. PLoS One 15(10): e0240853. https://doi.org/10.1371/journal.pone.0240853
  13. Egorova MA, Akimov AG (2020) Specialization of Neurons with Different Response Patterns in the Mouse Mus musculus Auditory Midbrain and Primary Auditory Cortex during Communication Call Processing. J Evol Biochem Physiol 56(5): 406–414. https://doi.org/10.1134/S0022093020050038
  14. Akimov AG, Egorova MA, Ehret G (2017) Spectral summation and facilitation in on-and off-responses for optimized representation of communication calls in mouse inferior colliculus. Eur J Neurosci 45(3): 440–459. https://doi.org/10.1111/ejn.13488
  15. Sidman RL, Angewine JB, Pierce ET (1977) In: Atlas of the Mouse Brain and Spinal Cord. Massachusetts. Harvard Univer Press.
  16. Machmerth H, Theiss D, Schnitzler HU (1975) Konstruktion eines Luftschallgebers mit konstantem Frequenzgang im Bereich von 15–130 kHz. Acustica 34: 81–85.
  17. Egorova M, Ehret G (2008) Tonotopy and inhibition in the midbrain inferior colliculus shape spectral resolution of sounds in critical bands. Eur J Neurosci 28: 675–692. https://doi.org/10.1111/j.1460-9568.2008.06376.x
  18. Egorova M, Vartanian I, Ehret G (2006) Frequency response areas of mouse inferior colliculus neurons II. Critical bands. Neuroreport 17(17): 1783–1786. https://doi.org/10.1097/01.wnr.0000239966.29308.fb
  19. Egorova MA, Akimov AG (2013) Spectral coding in auditory midbrain neurons. J Integr Neurosci 12(1): 1–15. https://doi.org/10.1142/S0219635213500027
  20. Егорова МА, Вартанян ИА, Эрет Г (2002) Нейрофизиологические предпосылки слуховых критических полос на уровне среднего мозга. Сенсорн сист 16: 3–12. [Egorova MA, Vartanian IA, Ehret G (2002) Neurophysiological background for auditory critical bands in the auditory midbrain. Sensorn Sist 16: 3–12. (In Russ)].
  21. Malinina ES, Egorova MA, Akimov AG (2015) Neurophysiological approaches to studying the functional role of auditory critical bands. J Evol Biochem Physiol 51(5): 401–411. https://doi.org/10.1134/S0022093015050063
  22. Khorunzhii GD, Egorova MA (2014) Time characteristics of impulse activity of neurons with the V-shaped frequency receptive fields in the house mouse (Mus musculus) auditory midbrain. J Evol Biochem Physiol 50(4): 357–361. https://doi.org/10.1134/S0022093014040097
  23. Kelly JB, Zhang H, Wu SH (2001) Contribution of AMPA and NMDA receptors to the excitatory responses in the inferior colliculus. Hear Res 165: 35–42. https://doi.org/10.1016/S0378-5955(02)00372-6
  24. Erreger K, Chen PE, Wyllie DJ, Traynelis SF (2004) Glutamate receptor gating. Crit Rev Neurobiol 16(3): 187–224. https://doi.org/10.1615/CritRevNeurobiol.v16.i3.10
  25. Wu SH, Ma CL, Kelly JB (2004) Contribution of AMPA, NMDA, and GABAa receptors to temporal pattern of postsynaptic responses in the inferior colliculus of the rat. J Neurosci 24(19): 4625–4634.https://doi.org/10.1523/JNEUROSCI.0318-04.2004
  26. LeBeau FEN, Malmieca MS, Rees A (2001) Iontophoresis in vivo demonstrates a key role for GABAA and glycinergic inhibition in shaping frequency response areas in the inferior colliculus of guinea pig. J Neurosci 21: 7303–7312. https://doi.org/10.1523/JNEUROSCI.21-18-07303.2001
  27. Schofield BR, Beebe NL (2019) Subtypes of GABAergic cells in the inferior colliculus. Hear Res 376: 1–10. https://doi.org/10.1016/j.heares.2018.10.001
  28. Kreeger LJ, Connelly CJ, Mehta P, Zemelman BV, Golding NL (2021) Excitatory cholecystokinin neurons of the midbrain integrate diverse temporal responses and drive auditory thalamic subdomains. Proc Natl Acad Sci U S A 118(10): e2007724118. https://doi.org/10.1073/pnas.2007724118
  29. Oliver DL, Kuwada S, Yin TCT, Haberly LB, Henkel CK (1991) Dendritic and axonal morphology of HRP-injected neurons in the inferior colliculus of the cat. J Comp Neurol 303: 75–100.https://doi.org/10.1002/cne.903030108
  30. Malmierca MS, Blackstad TW, Osen KK, Karagülle T, Molowny RL (1993) The central nucleus of the inferior colliculus in rat: a Golgi and computer reconstruction study of neuronal and laminar structure. J Comp Neurol 333: 1–27. https://doi.org/10.1002/cne.903330102
  31. Malmierca MS, Seip KL, Osen KK (1995) Morphological classification and identification of neurons in the inferior colliculus: a multivariate analysis. Anat Embryol 191: 343–350. https://doi.org/10.1007/BF00534687
  32. Rivera-Perez LM, Kwapiszewski JT, Roberts MT (2021) α3β4* Nicotinic acetylcholine receptors strongly modulate the excitability of VIP neurons in the mouse inferior colliculus. bioRxiv: 1–26. https://doi.org/10.3389/fncir.2021.709387
  33. Kwapiszewski JT, Rivera-Perez LM, Roberts MT (2022) Cholinergic boutons are distributed along the dendrites and somata of VIP neurons in the inferior colliculus. bioRxiv. https://doi.org/10.1101/2022.09.18.508423
  34. Liu M, Dai J, Zhou M, Liu J, Ge X, Wang N, Zhang J (2022) Mini-review: The neural circuits of the non-lemniscal inferior colliculus. Neurosci Lett 136567. https://doi.org/10.1016/j.neulet.2022.136567
  35. Beebe NL, Silveira MA, Goyer D, Noftz WA, Roberts MT, Schofield BR (2022) Neurotransmitter phenotype and axonal projection patterns of VIP-expressing neurons in the inferior colliculus. J Chem Neuroanat 126: 102189. https://doi.org/10.1016/j.jchemneu.2022.102189
  36. Silveira MA, Anair JD, Beebe NL, Mirjalili P, Schofield BR, Roberts MT (2020) Neuropeptide Y expression defines a novel class of GABAergic projection neuron in the inferior colliculus. J Neurosci 40(24): 4685–4699. https://doi.org/10.1523/JNEUROSCI.0420-20.2020
  37. Anair JD, Silveira MA, Mirjalili P, Beebe NL, Schofield BR, Roberts MT (2022) Inhibitory NPY neurons provide a large and heterotopic commissural projection in the inferior colliculus. Front Neur Circ 16. https://doi.org/10.3389/fncir.2022.871924
  38. Peruzzi D, Sivaramakrishnan S, Oliver DL (2000) Identification of cell types in brain slices of the inferior colliculus. Neuroscience 101(2): 403–416. https://doi.org/10.1016/S0306-4522(00)00382-1
  39. Rhode WS, Oertel D, Smith PH (1983) Physiological response properties of cells labeled intracellularly with horseradish peroxidase in cat ventral cochlear nucleus. J Comp Neurol 213(4): 448–463.https://doi.org/10.1002/cne.902130408
  40. Golding NL, Robertson D, Oertel D (1995) Recordings from slices indicate that octopus cells of the cochlear nucleus detect coincident firing of auditory nerve fibers with temporal precision. J Neurosci 15(4): 3138–3153. https://doi.org/10.1523/JNEUROSCI.15-04-03138.1995

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (27KB)
3.

Baixar (369KB)
4.

Baixar (509KB)
5.

Baixar (599KB)
6.

Baixar (315KB)

Declaração de direitos autorais © Г.Д. Хорунжий, М.А. Егорова, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies