Ожирение и старение. Общие аспекты

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Ожирение связано с повышенным риском развития острых и хронических заболеваний, включая гипертонию, инсульт, инфаркт миокарда, сердечно-сосудистые заболевания, диабет, рак, и сокращает продолжительность жизни на срок до 20 лет, увеличивая риск преждевременной смерти. Показано, что метаболические изменения, связанные с ожирением, аналогичны наблюдаемым при старении. Так, ожирение и старение имеют сходный спектр фенотипов, таких как нарушение целостности генома, функции митохондрий, накопление внутриклеточных макромолекул, ослабление иммунитета, системное воспаление. Общность механизмов может лежать в основе ускорения процессов старения как на молекулярном, так и системном уровнях. Таким образом, понимание механизмов дисфункции жировой ткани при ожирении может дать представление о процессах, которые способствуют метаболической дисфункции, связанной с процессом старения. В данном обзоре будут рассмотрены молекулярные и клеточные механизмы, лежащие в основе ожирения и старения, а также как ожирение способно активировать процессы старения, инициируя раннее начало хронических заболеваний, ассоциированных со старением.

Об авторах

Ю. А. Дылева

Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний

Автор, ответственный за переписку.
Email: dyleva87@yandex.ru
Россия, Кемерово

Е. В. Белик

Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний

Email: dyleva87@yandex.ru
Россия, Кемерово

О. В. Груздева

Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний

Email: dyleva87@yandex.ru
Россия, Кемерово

Список литературы

  1. CDC (2020) Obesity Is a Common, Serious, and Costly Disease. https://www.cdc. gov/obesity/data/adult.html
  2. Hruby A, Hu FB (2015) The epidemiology of obesity: a big picture. Pharmacoeconomics 33: 673–689. https://doi.org/10.1007/s40273-014-0243-x
  3. Yazdi FT, Clee SM, Meyre D (2015) Obesity genetics in mouse and human: back and forth, and back again. Peer J 3: e856.https://doi.org/10.7717/peerj.856
  4. Valdes AM, Andrew T, Gardner JP, Kimura M, Oelsner E, Cherkas LF, Aviv A, Spector TD (2005) Obesity, cigarette smoking, and telomere length in women. Lancet 366 (9486): 662–664. https://doi.org/10.1016/S0140-6736(05)66630-5
  5. Palmer AK, Kirkland JL (2016) Aging and adipose tissue: potential interventions for diabetes and regenerative medicine. Exp Gerontol 86: 97–105. https://doi.org/10.1016/j.exger.2016.02.013
  6. Rosen ED, Spiegelman BM (2014) What we talk when we talk about fat. Cell 156: 20–44. https://doi.org/10.1016/j.cell.2013.12.012
  7. Bunnell BA (2021) Adipose Tissue-Derived Mesenchymal Stem Cells. Cells 10 (12): 3433. https://doi.org/10.3390/cells10123433
  8. Van Marken Lichtenbelt W (2012) Brown adipose tissue and the regulation of nonshivering thermogenesis. Curr Opin Clin Nutr Metab Care 15 (6): 547–552. https://doi.org/10.1097/MCO.0b013e3283599184
  9. Cinti S (2017) UCP1 protein: the molecular hub of adipose organ plasticita. Biochimie 134: 71–76. https://doi.org/10.1016/j.biochi.2016.09.008
  10. Khan S, Chan YT, Revelo XS, Winer DA (2020) The immune landscape of visceral adipose tissue during obesity and aging. Front Endocrinol (Lausanne) 11: 267. https://doi.org/10.3389/fendo.2020.00267
  11. Gesta S, Bluher M, Yamamoto Y, Norris AW, Berndt J, Kralisch S, Boucher J, Lewis C, Kahn CR (2006) Evidence for a role of developmental genes in the origin of obesity and body fat distribution. Proc Natl Acad Sci U S A 103 (17): 6676–6681. https://doi.org/10.1073/pnas.0601752103
  12. Ritchie SA, Connell JM (2007) The link between abdominal obesity, metabolic syndrome and cardiovascular disease. Nutr Metab Cardiovasc Dis 17 (4): 319–326. https://doi.org/10.1016/j.numecd.2006.07.005
  13. Philipsen ME, Jorgensen D, Vistisen A, Sandbaek TP, Almdal JS, Christiansen T, Lauritzen DR (2015) Witte Associations between ultrasound measures of abdominal fat distribution and indices of glucose metabolism in a population at high risk of type 2 diabetes: the ADDITION-PRO study. PLoS One 10 (4): e0123062. https://doi.org/10.1371/journal.pone.0123062
  14. Zoico E, Rubele S, De Caro A, Nori N, Mazzali G, Fantin F, Rossi A, Zamboni M (2019) Brown and beige adipose tissue and aging. Front Endocrinol (Lausanne) 20 (10): 368. https://doi.org/10.3389/fendo.2019.00368
  15. Rogers NH (2014) Brown adipose tissue during puberty and with aging. Ann Med 47: 142–149. https://doi.org/10.3109/07853890.2014.914807
  16. Lecoultre V, Ravussin E (2011) Brown adipose tissue and aging. Curr Opin Clin Nutr Metab Care 14: 1–6. https://doi.org/10.1097/MCO.0b013e328341221e
  17. Chait A, den Hartigh LJ (2020) Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease. Front Cardiovasc Med 25(7): 22. https://doi.org/10.3389/fcvm.2020.00022
  18. Коков АН, Брель НК, Масенко ВЛ, Груздева ОВ, Каретникова ВН, Кашталап ВВ, Барбараш ОЛ (2017) Количественная оценка висцерального жирового депо у больных ишемической болезнью сердца с использованием современных томографических методик. Комплексн пробл сердечно-сосуд заболев 3: 113–119. [Kokov AN, Brel NK, Masenko VL, Gruzdeva OV, Karetnikova VN, Kashtalap VV, Barbarash OL (2017) Quantitative assessment of visceral fat depot in patients with coronary heart disease using modern tomographic techniques. Complex Probl Cardiovasc Diseases 3: 113–119. (In Russ)].https://doi.org/10.17802/2306-1278-2017-6-3-113-119
  19. Conte M, Martucci M, Sandri M, Franceschi C, Salvioli S (2019) The dual role of the pervasive “fattish” tissue remodeling with age. Front Endocrinol (Lausanne) 10: 114. https://doi.org/10.3389/fendo.2019.00114.10(114)
  20. Tanti JF, Ceppo F, Jager J, Berthou F (2012) Implication of inflammatory signaling pathways in obesity-induced insulin resistance. Front Endocrinol 3: 181. https://doi.org/10.3389/fendo.2012.00181
  21. Foster MT, Shi H, Seeley RJ, Woods SC (2011) Removal of intra-abdominal visceral adipose tissue improves glucose tolerance in rats: role of hepatic triglyceride storage. Physiol Behav 104 (5): 845–854. https://doi.org/10.1016/j.physbeh.2011.04.064
  22. Silaghi A, Piercecchi-Marti M-D, Grino M, Leonetti G, Alessi M.C, Clement K, Dadoun F, Dutour A (2008) Epicardial Adipose Tissue Extent: Relationship With Age, Body Fat Distribution, and Coronaropathy. Obesity 16: 2424–2430. https://doi.org/10.1038/oby.2008.379
  23. Lacobellis G, Leonetti F (2005) Epicardial adipose tissue and insulin resistance in obese subjects. J Clin Endocrinol Metab 90: 6300–6302. https://doi.org/10.1210/jc.2005-1087
  24. Kankaanpa M, Lehto H-R, Parkka JP, Komu M, Viljanen A, Ferrannini E, Knuuti J, Nuutila P, Parkkola R, Iozzo P (2006) Myocardial triglyceride content and epicardial fat mass in human obesity: relationship to left ventricular function and serum free fatty acid levels. J Clin Endocrinol Metab 91: 4689–4695. https://doi.org/10.1210/jc.2006-0584
  25. Mazzoccoli G, Dagostino MP, Greco A (2012) Age-related changes of epicardial fat thickness. Biomed Prevent Nutrit 2 (1): 38–41. https://doi.org/10.1016/j.bionut.2011.06.024
  26. Silaghi A, Piercecchi-Marti M, Grino M, Leonetti G, Alessi MC, Clement K, Dadoun F, Dutour A (2008) Epicardial Adipose Tissue Extent: Relationship With Age, Body Fat Distribution, and Coronaropathy. Obesity 16: 2424–2430. https://doi.org/10.1038/oby.2008.379
  27. Gruzdeva OV, Dyleva YA, Belik EV, Sinitsky MY, Stasev AN, Kokov AN, Brel NK, Krivkina EO, Bychkova EE, Tarasov RS, Barbarash OL (2022) Relationship between Epicardial and Coronary Adipose Tissue and the Expression of Adiponectin, Leptin, and Interleukin 6 in Patients with Coronary Artery Disease. J Pers Med 12: 129. https://doi.org/10.3390/jpm12020129
  28. Fu M, Xu L, Chen X, Han W, Ruan C, Li J, Cai C, Ye M, Gao P (2019) Neural crest cells differentiate into brown adipocytes and contribute to periaortic arch adipose tissue formation. Arterioscler Thromb Vasc Biol 39: 1629–1644. https://doi.org/10.1161/ATVBAHA.119.312838
  29. Kim HW, Belin de Chantemèle EJ, Weintraub NL (2019) Perivascular adipocytes in vascular disease. Arterioscler Thromb Vasc Biol 39: 2220–2227. https://doi.org/10.1161/ATVBAHA.119.312304
  30. Szasz T, Webb RC (2012) Perivascular adipose tissue: more than just structural support. Clin Sci 122: 1–12. https://doi.org/10.1042/CS20110151
  31. Mattu HS, Randeva HS (2013) Role of adipokines in cardiovascular disease. J Endocrinol 216: T17–T36. https://doi.org/10.1530/JOE-12-0232
  32. Zemancíkova A, Torok J (2019) Influence of Age on Anticontractile Effect of Perivascular Adipose Tissue in Normotensive and Hypertensive Rats. Oxid Med Cell Longev 9314260. https://doi.org/10.1155/2019/9314260
  33. Chang L, Xiong W, Zhao X, Fan Y, Guo Y, Garcia-Barrio M, Zhang J, Jiang Z, Lin JD, Chen YE (2018) Bmal1 in perivascular adipose tissue regulates restingphase blood pressure through transcriptional regulation of angiotensinogen. Circulation 138: 67–79. https://doi.org/10.1161/CIRCULATIONAHA.117.029972
  34. Saxton SN, Clark BJ, Withers SB, Eringa EC, Heagerty AM (2019) Mechanistic links between obesity, diabetes, and blood pressure: role of perivascular adipose tissue. Physiol Rev 99: 1701–1763. https://doi.org/10.1152/physrev.00034.2018
  35. Sena CM, Pereira A, Fernandes R, Letra L, Seiça RM (2017) Adiponectin improves endothelial function in mesenteric arteries of rats fed a high-fat diet: role of perivascular adipose tissue. Br J Pharmacol 174: 3514–3526. https://doi.org/10.1111/bph.13756
  36. Pan XX, Ruan CC, Liu XY, Kong LR, Ma Y, Wu QH, Li HQ, Sun YJ, Chen AQ, Zhao Q, Wu F, Wang XJ, Wang JG, Zhu DL, Gao PJ (2019) Perivascular adipose tissue-derived stromal cells contribute to vascular remodeling during aging. Aging Cell 18: e12969. https://doi.org/10.1111/acel.12969
  37. Schulz TJ, Huang TL, Tran TT, Zhang H, Townsend KL, Shadrach JL, Cerletti M, McDougall LE, Giorgadze N, Tchkonia T, Schrier D, Falb D, Kirkland JL, Wagers AJ, Tseng Y-H (2011) Identification of inducible brown adipocyte progenitors residing in skeletal muscle and white fat. Proc Natl Acad Sci U S A 108:143–148. https://doi.org/10.1073/pnas.1010929108
  38. Munoz MF, Arguelles S, Marotta F, Barbagallo M, Cano M, Ayala A (2020) Effect of Age and Lipoperoxidation in Rat and Human Adipose Tissue-Derived Stem Cells. Oxid Med Cell Longev 6473279. https://doi.org/10.1155/2020/6473279
  39. Xu M, Palmer AK, Ding H, Weivoda MM, Pirtskhalava T, White TA, Sepe A, Johnson KO, Stout MB, Giorgadze N, Jensen MD, LeBrasseur NK, Tchkonia T, Kirkland JL (2015) Targeting senescent cells enhances adipogenesis and metabolic function in old age. eLife 4: e12997. https://doi.org/10.7554/eLife.12997
  40. Zhu XY, Ma S, Eirin A, Woollard JR, Hickson LJ, Sun D, Lerman A, Lerman LO (2016) Functional plasticity of adipose-derived stromal cells during development of obesity. Stem Cells Transl Med 5: 893–900. https://doi.org/10.5966/sctm.2015-0240
  41. Palmer AK, Xu M, Zhu Y, Pirtskhalava T, Weivoda MM, Hachfeld CM, Prata LG, van Dijk TH, Verkade E, Casaclang-Verzosa G, Johnson KO, Cubro H, Doornebal EJ, Ogrodnik M, Jurk D, Jensen MD, Chini EN, Miller JD, Matveyenko A, Stout MB, Schafer MJ, White TA, Hickson LJ, Demaria M, Garovic V, Grande J, Arriaga EA, Kuipers F, von Zglinicki T, LeBrasseur NK, Campisi J, Tchkonia T, Kirkland JL (2019) Targeting senescent cells alleviates obesity-induced metabolic dysfunction. Aging Cell 18: e12950. https://doi.org/10.1111/acel.12950
  42. Cancello R, Tordjman J, Poitou C, Guilhem G, Bouillot JL, Hugol D, Coussieu C, Basdevan A, Hen AB, Bedossa P, M Guerre-Millo, K Clement (2006) Increased infiltration of macrophages in omental adipose tissue is associated with marked hepatic lesions in morbid human obesity. Diabetes 55: 1554–1561. https://doi.org/10.2337/db06-0133
  43. Cipolletta D, Cohen P, Spiegelman BM, Benoist C, Mathis D (2015) Appearance and disappearance of the mRNA signature characteristic of Treg cells in visceral adipose tissue: age, diet, and PPARγ effects. Proc Natl Acad Sci U S A 112: 482–487. https://doi.org/10.1073/pnas.1423486112
  44. Cipolletta D, Feuerer M, Li A, Kamei N, Lee J, Shoelson SE, Benoist C, Mathis D (2012) PPARγ is a major driver of the accumulation and phenotype of adipose-tissue Treg cells. Nature 486: 549–553. https://doi.org/10.1038/nature11132
  45. Deiuliis J, Shah Z, Shah N, Needleman B, Mikami D, Narula V, Perry K, Hazey J, Kampfrath T, Kollengode M, Sun Q, Satoskar AR, Lumeng C, Moffatt-Bruce S, Rajagopalan S (2011) Visceral adipose inflammation in obesity is associated with critical alterations in tregulatory cell numbers. PLoS One 6: e16376. https://doi.org/10.1371/journal.pone.0016376
  46. Stout MB, Justice JN, Nicklas BJ, Kirkland JL (2017) Physiological Aging: Links Among Adipose Tissue Dysfunction, Diabetes, and Frailty. Physiology 32: 9–19. https://doi.org/10.1152/physiol.00012.2016
  47. Childs BG, Li H, van Deursen JM (2018) Senescent cells: a therapeutic target for cardiovascular disease. J Clin Invest 128 (4): 1217–1228. https://doi.org/10.1172/JCI95146
  48. LeBrasseur NK, Tchkonia T, Kirkland JL (2015) Cellular Senescence and the Biology of Aging, Disease, and Frailty. Nestle Nutr Inst Workshop Ser 83: 11–18. https://doi.org/10.1159/000382054
  49. Carter CS, Justice JN, Thompson L (2019) Lipotoxicity, aging, and muscle contractility: Does fiber type matter? Geroscience 41: 297–308. https://doi.org/10.1007/s11357-019-00077-z
  50. Childs BG, Li H, van Deursen JM (2018) Senescent cells: A therapeutic target for cardiovascular disease. J Clin Invest 128: 1217–1228. https://doi.org/10.1172/JCI95146
  51. Ogrodnik M, Zhu Y, Langhi LGP, Tchkonia T, Kruger P, Fielder E, Victorelli S, Ruswhandi RA, Giorgadze N, Pirtskhalava T, Podgorni O, Enikolopov G, Johnson KO, Xu M, Inman C, Palmer AK, Schafer M, Weigl M, Ikeno Y, Burns TC, Passos JF, von Zglinicki T, Kirkland JL, Jurk D (2019) Obesity-Induced Cellular Senescence Drives Anxiety and Impairs Neurogenesis. Cell Metab 29: 1233. https://doi.org/10.1016/j.cmet.2019.01.013
  52. Xu M, Tchkonia T, Ding H, Ogrodnik M, Lubbers ER, Pirtskhalava T, White TA, Johnson KO, Stout MB, Mezera V, Giorgadze N, Jensen MD, LeBrasseur NK, Kirkland JL (2015) JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age. Proc Natl Acad Sci U S A 112: E6301–E6310. https://doi.org/10.1073/pnas.1515386112
  53. Hansen M, Rubinsztein DC, Walker DW (2018) Autophagy as a promoter of longevity: insights from model organisms. Nat Rev Mol Cell Biol 19(9): 579–593. https://doi.org/10.1038/s41580-018-0033-y
  54. Gual P, Gilgenkrantz H, Lotersztajn S (2017) Autophagy in chronic liver diseases: the two faces of Janus. Am J Physiol Cell Physiol 312 (3): C263–C273. https://doi.org/10.1152/ajpcell.00295.2016
  55. Zhang Y, Sowers JR, Ren J (2018) Targeting autophagy in obesity: from pathophysiology to management. Nat Rev Endocrinol 14 (6): 356–376. https://doi.org/10.1038/s41574-018-0009-1
  56. Oishi Y, Manabe I (2016) Macrophages in age-related chronic inflammatory diseases. NPJ Aging Mech Dis 2 (1): 16018. https://doi.org/10.1038/npjamd.2016.18
  57. Zhong Z, Umemura A, Sanchez-Lopez E, Liang S, Shalapour S, Wong J, He F, Boassa D, Perkins G, Ali SR, McGeough MD, Ellisman MH, Seki E, Gustafsson AB, Hoffman HM, Diaz-Meco MT, Moscat J, Karin M (2016) NF-kappaB restricts inflammasome activation via elimination of damaged mitochondria. Cell 164 (5): 896–910. https://doi.org/10.1016/j.cell.2015.12.057
  58. Otero MG, Fernandez Bessone I, Hallberg AE, Cromberg LE, De Rossi MC, Saez T.M, Levi V, Almenar-Queralt A, Falzone TL (2018) Proteasome stress leads to APP axonal transport defects by promoting its amyloidogenic processing in lysosomes. J Cell Sci 131 (11): jcs214536. https://doi.org/10.1242/jcs.214536
  59. Yuzefovych LV, Musiyenko SI, Wilson GL., Rachek LI (2013) Mitochondrial DNA damage and dysfunction, and oxidative stress are associated with endoplasmic reticulum stress, protein degradation and apoptosis in high fat diet-induced insulin resistance mice. PLoS One 8 (1): e54059. https://doi.org/10.1371/journal.pone.0054059
  60. Sun S, Ji Y, Kersten S, Qi L (2012) Mechanisms of inflammatory responses in obese adipose tissue. Annu Rev Nutr 32: 261–286. https://doi.org/10.1146/annurev-nutr-071811-150623
  61. Kuroda M, Sakaue H (2017) Adipocyte Death and Chronic Inflammation in Obesity. J Med Invest 64 (3-4): 193–196. https://doi.org/10.2152/jmi.64.193
  62. Caso G, McNurlan MA, Mileva I, Zemlyak A, Mynarcik DC, Gelato MC (2013) Peripheral fat loss and decline in adipogenesis in older humans. Metabolism 62: 337–340. https://doi.org/10.1016/j.metabol.2012.08.007
  63. Alt EU, Senst C, Murthy SN, Slakey DP, Dupin CL, Chaffin AE, Kadowitz PJ, Izadpanah R (2012) Aging alters tissue resident mesenchymal stem cell properties. Stem Cell Res 8: 215–225. https://doi.org/10.1016/j.scr.2011.11.002
  64. Mau T, Yung R (2018) Adipose tissue inflammation in aging. Exp Gerontol 105: 27–31. https://doi.org/10.1016/j.exger.2017.10.014
  65. Lumeng CN, Bodzin JL, Saltiel AR (2007) Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 117: 175–184. https://doi.org/10.1172/JCI29881
  66. Bandet CL, Tan-Chen S, Bourron O, Le Stunff H, Hajduch E (2019) Sphingolipid Metabolism: New Insight into Ceramide-Induced Lipotoxicity in Muscle Cells. Int J Mol Sci 20: 479. https://doi.org/10.3390/ijms20030479
  67. Koster A, Patel KV, Visser M, van Eijk JT, Kanaya AM, de Rekeneire N, Newman AB, Tylavsky FA, Kritchevsky SB, Harris TB (2008) Health, Aging and Body Composition Study Joint effects of adiposity and physical activity on incident mobility limitation in older adults. J Am Geriatr Soc 56: 636–643. https://doi.org/10.1111/j.1532-5415.2007.01632.x
  68. Beavers KM, Beavers DP, Houston DK, Harris TB, Hue TF, Koster A, Newman AB, Simonsick EM, Studenski SA, Nicklas BJ, Kritchevskyet SB (2013) Associations between body composition and gait-speed decline: Results from the Health, Aging, and Body Composition study. Am J Clin Nutr 97: 552–560. https://doi.org/10.3945/ajcn.112.047860
  69. Giolo De Carvalho F, Sparks LM (2019) Targeting White Adipose Tissue with Exercise or Bariatric Surgery as Therapeutic Strategies in Obesity. Biology 8: 16. https://doi.org/10.3390/biology8010016
  70. Pak JW, Herbst A, Bua E, Gokey N, McKenzie D, Aiken JM (2003) Mitochondrial DNA mutations as a fundamental mechanism in physiological declines associated with aging. Aging Cell 2: 1–7. https://doi.org/10.1046/j.1474-9728.2003.00034.x
  71. Tsuji W, Rubin JP, Marra KG (2014) Adipose-derived stem cells: Implications in tissue regeneration. World J. Stem Cells 6: 312–321. https://doi.org/10.4252/wjsc.v6.i3.312
  72. Jang JY, Blum A, Liu J, Finkel T (2018) The role of mitochondria in aging. J Clin Invest 128: 3662–3670. https://doi.org/10.1172/JCI120842

© Ю.А. Дылева, Е.В. Белик, О.В. Груздева, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах