A Minimally Invasive Method of Wireless Electroencephalogram Recording in Rats in a Lithium–Pilocarpine Model of Epilepsy

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Recent studies have shown that neuroinflammation plays an important role in the pathogenesis of many nervous and mental diseases, such as cortical ischemia, craniocerebral trauma, neurodegenerative diseases, epilepsy, etc. Therefore, when recording EEG in experimental models of these diseases, it is preferable to use noninvasive recording methods to exclude neuroinflammation. However, such approaches are rarely used, since it is difficult to perform reliable EEG recording in animals without the use of implanted electrodes. In the present work a new device for minimally invasive wireless EEG recording in rats is proposed. The electrodes are located on the surface of the skull and are attached to a platform, which is fixed to the skull with screws. This design avoids damage to brain tissue. The surgery is minimally traumatic, and EEG registration can be performed as early as 2–3 days after surgery. High reliability of electrode attachment allows long-term registration. This method of EEG registration has been tested on a lithium-pilocarpine model of temporal lobe epilepsy. EEG recordings in experimental and control rats were made under background conditions and with the use of functional loads – rhythmic photo- and phonostimulation, as well as sleep deprivation. It was shown that these functional loads allow increasing the severity of epileptiform manifestations on the EEG (spike frequencies), the maximum differences between the groups being manifested with a combination of the above loads. Thus, the main feature of the proposed EEG recording device is that it makes it possible to perform prolonged EEG studies on a free-moving rat without the development of possible neuroinflammation. This device can be used in experiments to study epileptogenesis and to test new antiepileptic drugs on experimental animals.

Sobre autores

D. Sinyak

Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS

Email: aleksey_zaitsev@mail.ru
Russia, St. Petersburg

G. Bukov

Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS

Email: aleksey_zaitsev@mail.ru
Russia, St. Petersburg

V. Sizov

Institute of Experimental Medicine

Email: aleksey_zaitsev@mail.ru
Russia, St. Petersburg

O. Zubareva

Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS

Email: aleksey_zaitsev@mail.ru
Russia, St. Petersburg

D. Amakhin

Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS

Email: aleksey_zaitsev@mail.ru
Russia, St. Petersburg

A. Zaitsev

Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS

Autor responsável pela correspondência
Email: aleksey_zaitsev@mail.ru
Russia, St. Petersburg

Bibliografia

  1. Radtke FA, Chapman G, Hall J, Syed YA (2017) Modulating Neuroinflammation to Treat Neuropsychiatric Disorders. Biomed Res Int 2017: 1–21. https://doi.org/10.1155/2017/5071786
  2. Calsolaro V, Edison P (2016) Neuroinflammation in Alzheimer’s disease: Current evidence and future directions. Alzheimer’s Dement 12: 719–732. https://doi.org/10.1016/j.jalz.2016.02.010
  3. Jurcau A, Simion A (2021) Neuroinflammation in Cerebral Ischemia and Ischemia/Reperfusion Injuries: From Pathophysiology to Therapeutic Strategies. Int J Mol Sci 23: 14. https://doi.org/10.3390/ijms23010014
  4. Fiest KM, Sauro KM, Wiebe S, Patten SB, Kwon C-S, Dykeman J, Pringsheim T, Lorenzetti DL, Jetté N (2017) Prevalence and incidence of epilepsy. Neurology 88: 296–303. https://doi.org/10.1212/WNL.0000000000003509
  5. Fattorusso A, Matricardi S, Mencaroni E, Dell’Isola GB, Di Cara G, Striano P, Verrotti A (2021) The Pharmacoresistant Epilepsy: An Overview on Existant and New Emerging Therapies. Front Neurol 12: 1030. https://doi.org/10.3389/FNEUR.2021.674483/BIBTEX
  6. Chen H, Koubeissi MZ (2019) Electroencephalography in Epilepsy Evaluation. Contin Lifelong Learn Neurol 25: 431–453. https://doi.org/10.1212/CON.0000000000000705
  7. Salami P, Lévesque M, Benini R, Behr C, Gotman J, Avoli M (2014) Dynamics of interictal spikes and high-frequency oscillations during epileptogenesis in temporal lobe epilepsy. Neurobiol Dis 67: 97–106. https://doi.org/10.1016/j.nbd.2014.03.012
  8. Kim JE, Cho KO (2018) The Pilocarpine Model of Temporal Lobe Epilepsy and EEG Monitoring Using Radiotelemetry System in Mice. J Vis Exp e56831. https://doi.org/10.3791/56831
  9. Castro OW, Santos VR, Pun RYK, McKlveen JM, Batie M, Holland KD, Gardner M, Garcia-Cairasco N, Herman JP, Danzer SC (2012) Impact of Corticosterone Treatment on Spontaneous Seizure Frequency and Epileptiform Activity in Mice with Chronic Epilepsy. PLoS One 7: e46044. https://doi.org/10.1371/journal.pone.0046044
  10. Wang S, Lévesque M, Avoli M (2019) Transition from status epilepticus to interictal spiking in a rodent model of mesial temporal epilepsy. Epilepsy Res 152: 73–76. https://doi.org/10.1016/j.eplepsyres.2019.03.005
  11. Kovács Z, Czurkó A, Kékesi KA, Juhász G (2011) Intracerebroventricularly administered lipopolysaccharide enhances spike–wave discharges in freely moving WAG/Rij rats. Brain Res Bull 85: 410–416. https://doi.org/10.1016/j.brainresbull.2011.05.003
  12. Flink R, Pedersen B, Guekht AB, Malmgren K, Michelucci R, Neville B, Pinto F, Stephani U, Özkara C (2002) Guidelines for the use of EEG methodology in the diagnosis of epilepsy. Acta Neurol Scand 106: 1–7. https://doi.org/10.1034/j.1600-0404.2002.01361.x
  13. Renzel R, Baumann CR, Poryazova R (2016) EEG after sleep deprivation is a sensitive tool in the first diagnosis of idiopathic generalized but not focal epilepsy. Clin Neurophysiol 127: 209–213. https://doi.org/10.1016/j.clinph.2015.06.012
  14. Lévesque M, Biagini G, de Curtis M, Gnatkovsky V, Pitsch J, Wang S, Avoli M (2021) The pilocarpine model of mesial temporal lobe epilepsy: Over one decade later, with more rodent species and new investigative approaches. Neurosci Biobehav Rev 130: 274–291. https://doi.org/10.1016/j.neubiorev.2021.08.020
  15. Vizuete AFK, Hansen F, Negri E, Leite MC, de Oliveira DL, Gonçalves C-A (2018) Effects of dexamethasone on the Li-pilocarpine model of epilepsy: protection against hippocampal inflammation and astrogliosis. J Neuroinflammat 15: 68. https://doi.org/10.1186/s12974-018-1109-5
  16. Dyomina AV, Zubareva OE, Smolensky IV, Vasilev DS, Zakharova MV, Kovalenko AA, Schwarz AP, Ischenko AM, Zaitsev AV (2020) Anakinra Reduces Epileptogenesis, Provides Neuroprotection, and Attenuates Behavioral Impairments in Rats in the Lithium–Pilocarpine Model of Epilepsy. Pharmaceuticals 13: 340. https://doi.org/10.3390/ph13110340
  17. Racine RJ (1972) Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol 32: 281–294. https://doi.org/10.1016/0013-4694(72)90177-0
  18. Sinton CM, Kovakkattu D, Friese RS (2009) Validation of a novel method to interrupt sleep in the mouse. J Neurosci Methods 184: 71–78. https://doi.org/10.1016/j.jneumeth.2009.07.026
  19. Simonova VV, Guzeev MA, Ekimova IV, Pastukhov YF (2022) Chaperone Hsp70 (HSPA1) Is Involved in the Molecular Mechanisms of Sleep Cycle Integration. Int J Mol Sci 23: 4464. https://doi.org/10.3390/ijms23084464
  20. Wu T, Avidan AY, Engel J (2021) Sleep and Epilepsy, Clinical Spectrum and Updated Review. Sleep Med Clin 16: 389–408. https://doi.org/10.1016/j.jsmc.2021.02.011
  21. Murthy Sindgi V, Basani M, Choudary P, Molugu K, Malothu R (2019) Development of Non-invasive Electroencephalography Technique in Animal Model. Indian J Pharm Educ Res 53: s619–s623. https://doi.org/10.5530/ijper.53.4s.157
  22. Fordington S, Manford M (2020) A review of seizures and epilepsy following traumatic brain injury. J Neurol 267: 3105–3111. https://doi.org/10.1007/s00415-020-09926-w
  23. Sankar R, Auvin S, Mazarati A, Shin D (2007) Inflammation contributes to seizure-induced hippocampal injury in the neonatal rat brain. Acta Neurol Scand 115: 16–20. https://doi.org/10.1111/j.1600-0404.2007.00804.x
  24. Marchi N, Fan Q, Ghosh C, Fazio V, Bertolini F, Betto G, Batra A, Carlton E, Najm I, Granata T, Janigro D (2009) Antagonism of peripheral inflammation reduces the severity of status epilepticus. Neurobiol Dis 33: 171–181. https://doi.org/10.1016/j.nbd.2008.10.002
  25. Troubat R, Barone P, Leman S, Desmidt T, Cressant A, Atanasova B, Brizard B, El Hage W, Surget A, Belzung C, Camus V (2021) Neuroinflammation and depression: A review. Eur J Neurosci 53: 151–171. https://doi.org/10.1111/ejn.14720
  26. Krendl R, Lurger S, Baumgartner C (2008) Absolute spike frequency predicts surgical outcome in TLE with unilateral hippocampal atrophy. Neurology 71: 413–418. https://doi.org/10.1212/01.wnl.0000310775.87331.90
  27. Bajorat R, Goerss D, Brenndörfer L, Schwabe L, Köhling R, Kirschstein T (2016) Interplay between interictal spikes and behavioral seizures in young, but not aged pilocarpine-treated epileptic rats. Epilepsy Behav 57: 90–94. https://doi.org/10.1016/j.yebeh.2016.01.014
  28. El-Hassar L, Milh M, Wendling F, Ferrand N, Esclapez M, Bernard C (2007) Cell domain-dependent changes in the glutamatergic and GABAergic drives during epileptogenesis in the rat CA1 region. J Physiol 578: 193–211. https://doi.org/10.1113/jphysiol.2006.119297
  29. Drinkenburg WHIM, Coenen AML, Vossen JMH, van Luijtelaar ELJM (1995) Sleep Deprivation and Spike-Wave Discharges in Epileptic Rats. Sleep 18: 252–256. https://doi.org/10.1093/sleep/18.4.252

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (78KB)
3.

Baixar (684KB)
4.

Baixar (476KB)
5.

Baixar (577KB)

Declaração de direitos autorais © Д.С. Синяк, Г.А. Буков, В.В. Сизов, О.Е. Зубарева, Д.В. Амахин, А.В. Зайцев, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies