Interhemispheric Symmetry and Asymmetry of Absence Type Spike-Wave Discharges Caused by Systemic Administration of Pentylenetetrazole

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Absence epilepsy is a specific generalized non-convulsive form occurring almost exclusively in children and adolescents. It is traditionally thought that the resulting seizure is completely generalized in the cortex of both hemispheres, as seen in humans on surface electroencephalograms and magnetoencephalograms. However, most studies were performed on animals, mainly rats – genetic (WAG/Rij and GAERS lines) and pharmacological models, since signals not only from the cortex, but also from subcortical structures such as the thalamus must be measured, what cannot be done on humans, who have no medical indications for intracranial surgery. In animals, measurements of local field potentials were almost always made from one hemisphere in order to cover the maximum number of brain structures involved. At the same time, the degree of synchrony of seizure onsets and terminations in different hemispheres in animals was practically not studied, and the markup itself in the vast majority of cases was done on the basis of one channel from motor or somato-sensory cortex. This work aims to reveal differences and similarities in the course of spike-wave discharges (the main encephalographic marker of absence seizures) in the cortex of the two hemispheres in a known pharmacological model of rats exposed to pentylentetrazole. For discharge detection, a method of automatic discharge marking is proposed and its sensitivity and specificity are evaluated using records of nine animals. We used it to mark seizures in symmetrical cortical sites from both hemispheres separately. According to the results of the analysis of seizure duration it turned out that for five out of nine animals the distribution of discharges significantly differed between the hemispheres, and for the other four was equal. Consequently, in the rat model, spike-wave activity may be generalized both symmetrically and asymmetrically, which may be due to individual peculiarities or different discharge triggering scenarios.

作者简介

A. Ershova

Saratov State University

Email: vili_von@mail.ru
Russia, Saratov

E. Suleymanova

Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Science

Email: vili_von@mail.ru
Russia, Moscow

A. Grishchenko

Saratov State University

编辑信件的主要联系方式.
Email: vili_von@mail.ru
Russia, Saratov

L. Vinogradova

Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Science

Email: vili_von@mail.ru
Russia, Moscow

I. Sysoev

Saratov State University

Email: vili_von@mail.ru
Russia, Saratov

参考

  1. Coenen A, van Luijtelaar G (2003) Genetic animal models for absence epilepsy: a review of the WAG/Rij strain of rats. Behav Genet 33(6): 635–655. https://doi.org/10.1023/a:1026179013847
  2. Marescaux C, Vergnes M, Depaulis A (1992) Genetic absence epilepsy in rats from Strasbourg - a review. J Neural Transmis Suppl 35: 37–69. https://doi.org/10.1007/978-3-7091-9206-1_4
  3. Akman O, Demiralp T, Ates N, Onat FY (2010) Electroencephalographic differences between WAG/Rij and GAERS rat models of absence epilepsy. Epilepsy Res 89(2): 185–193. https://doi.org/10.1016/j.eplepsyres.2009.12.005
  4. van Rijn CM, Gaetani S, Santolini I, Badura A, Gabova A, Fu J, Watanabe M, Cuomo V, van Luijtelaar G, Nicoletti F, Ngomba RT (2010) WAG/Rij rats show a reduced expression of CB1 receptors in thalamic nuclei and respond to the CB1 receptor agonist, R(+)WIN55,212-2, with a reduced incidence of spike-wave discharges. Epilepsia 51(8): 1511–1521. https://doi.org/10.1111/j.1528-1167.2009.02510.x
  5. Jafarian M, Esmaeil AM, Karimzadeh F (2020) Experimental Models of Absence Epilepsy. Basic Clin Neurosci 11(6): 715–726. https://doi.org/10.32598/bcn.11.6.731.1
  6. Marescaux C, Micheletti G, Vergnes M, Depaulis A, Rumbach L, Warter JM (1984) A Model of Chronic Spontaneous Petit Mal-like Seizures in the Rat: Comparison with Pentylenetetrazol-Induced Seizures. Epilepsia 25(3): 326–331. https://doi.org/10.1111/j.1528-1157.1984.tb04196.x
  7. Medina AE, Manhaes AC, Schmidt SL (2001) Sex differences in sensitivity to seizures elicited by pentylenetetrazol in mice. Pharmacol Biochem Behav 68(3): 591–596. https://doi.org/10.1016/s0091-3057(01)00466-x
  8. Solmaz I, Gürkanlar D, Gökcil Z, Göksoy C, Özkan M, Erdogan E (2009) Antiepileptic activity of melatonin in guinea pigs with pentylenetetrazol-induced seizures. Neurol Res 31(9): 989–995. https://doi.org/10.1179/174313209X385545
  9. Klioueva IA, van Luijtelaar ELJM, Chepurnova NE, Chepurnov SA (2001) PTZ-induced seizures in rats: effects of age and strain. Physiol Behav 72(3): 421–426. https://doi.org/10.1016/s0031-9384(00)00425-x
  10. Shandra AA, Godlevsky LS (2005) Pentylenetetrazol-Induced Kindling as a Model of Absence and Convulsive forms of Epilepsy. In: Corcoran ME, Mosh’e SL (eds) Kindling 6. Advances in Behavioral Biology, 55. Springer. Boston. MA. https://doi.org/10.1007/0-387-26144-3_6
  11. Vergnes M, Marescaux C (1992) Cortical and thalamic lesions in rats with genetic absence epilepsy. In: Marescaux C, Vergnes M, Bernasconi R (eds) Generalized Non-Convulsive Epilepsy: Focus on GABA-B Receptors. J Neur Transmis 35. Springer. Vienna. https://doi.org/10.1007/978-3-7091-9206-1_5
  12. Vinogradova LV, Koroleva VI (1993) Cortico-caudate spreading depression and seizure activity induced by systemic daily pentylenetetrazole injection in rats. Pavlov J High Nerv Act 43(4): 683–694.
  13. Koroleva VI, Vinogradova LV, Bures J (1993) Reduced incidence of cortical spreading depression in the course of pentylenetetrazol kindling in rats. Brain Res 608(1): 107–114. https://doi.org/10.1016/0006-8993(93)90780-q
  14. Crunelli V, Leresche N (2002) Childhood absence epilepsy: Genes, channels, neurons and networks. Nat Rev Neurosci 3: 371–382. https://doi.org/10.1038/nrn811
  15. Vinogradova LV, Vinogradov VY, Kuznetsova GD (2006) Unilateral cortical spreading depression is an early marker of audiogenic kindling in awake rats. Epilepsy Res 71(1): 64–75. https://doi.org/10.1016/j.eplepsyres.2006.05.014
  16. Paxinos G, Watson C (2005) The rat brain in stereotaxic coordinates. Elsevier. Amsterdam, Boston.
  17. Ovchinnikov A, Luttjohann A, Hramov A, van Luijtelaar G (2010) An algorithm for real-time detection of spike-wave discharges in rodents. J Neurosci Methods 194(1): 172–178. https://doi.org/10.1016/j.jneumeth.2010.09.017
  18. van Luijtelaar G, Luttjohann A, Makarov VV, Maksimenko VA, Koronovskii A, Hramov AE (2016) Methods of automated absence seizure detection, interference by stimulation, and possibilities for prediction in genetic absence models. J Neurosci Methods 260: 144–158. https://doi.org/10.1016/j.jneumeth.2015.07.010
  19. Grishchenko AA, Sysoeva MV, Sysoev IV (2020) Detecting the primary time scale of evolution of information properties for local field potentials in brain at absence epilepsy. Izvestiya VUZ. A-ppl Nonlin Dynam 28(1): 98–110. https://doi.org/10.18500/0869-6632-2020-28-1-98-110
  20. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P, Weckesser W, Bright J, van der Walt SJ, Brett M, Wilson J, Jarrod Millman K, Mayorov N, Nelson ARJ, Jones E, Kern R, Larson E, Carey C, Polat I, Feng Y, Moore EW, Vand erPlas J, Laxalde D, Perktold J, Cimrman R, Henriksen I, Quintero EA, Harris CR, Archibald M, Ribeiro AH, Pedregosa F, van Mulbregt P, Contributors S (2020) SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat Methods 17: 261–272. https://doi.org/10.1038/s41592-019-0686-2
  21. Grishchenko AA, van Rijn CM, Sysoev IV (2017) Comparative Analysis of Methods for Estimation of Undirected Coupling from Time Series of Intracranial EEGs of Cortex of Rats– Genetic Models of Absence Epilepsy. Math Biol Bioinf 12(2): 317–326. https://doi.org/10.17537/2017.12.317
  22. Grishchenko AA, Sysoeva MV, Medvedeva TM, van Rijn CM, Bezruchko BP, Sysoev IV (2020) Comparison of approaches to directed connectivity detection in application to spike-wave discharge study. Cybernet and Physics 9(2): 86–97. https://doi.org/10.35470/2226-4116-2020-9-2-86-97

补充文件

附件文件
动作
1. JATS XML
2.

下载 (682KB)
3.

下载 (60KB)
4.

下载 (238KB)
5.

下载 (290KB)
6.

下载 (271KB)
7.

下载 (266KB)

版权所有 © А.С. Ершова, Е.М. Сулейманова, А.А. Грищенко, Л.В. Виноградова, И.В. Сысоев, 2023

##common.cookie##