The Involvement of Acetylcholine and Na+,K+-ATPase in the Regulation of Skeletal Muscle Growth

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Recently, more and more attention has been paid to the discussion of the trophic function of the nervous system and its participation in the launch of signaling cascades regulating cellular metabolism. The role of acetylcholine and Na+,K+-ATPase in the regulation of skeletal muscle growth in 10–12-day-old chicken embryos under conditions of organotypic tissue culture was evaluated. The maximum trophotropic effect of acetylcholine was shown in a concentration 10–8 M. Inhibitory analysis proved the participation of the nicotinic acetylcholine receptor in this effect. Ouabain dose-dependent regulated the growth of skeletal muscle tissue explants. In concentrations comparable to endogenous ones, the glycoside stimulated the growth of experimental explants by 33% compared to the control value. The myotoxic properties of ouabain were found in the concentration range 10–6–10–4 M. Acetylcholine eliminated the myotoxic effect of the ouabain (10–6 M) both directly acting on the Na+,K+-ATPase, and the receptor-mediated through the nicotinic acetylcholine receptor.

作者简介

E. Lopatina

Pavlov First St. Petersburg State Medical University; Pavlov Institute of Physiology Russian Academy of Sciences

编辑信件的主要联系方式.
Email: evlopatina@yandex.ru
Russia, St. Petersburg; Russia, St. Petersburg

A. Gavrichenko

Pavlov First St. Petersburg State Medical University

Email: evlopatina@yandex.ru
Russia, St. Petersburg

N. Pasatetckaia

Pavlov First St. Petersburg State Medical University

Email: evlopatina@yandex.ru
Russia, St. Petersburg

参考

  1. Malomouzh AI, Nikolsky EE (2018) Modern concepts of cholinergic neurotransmission at the motor synapse. Biochemistry (Moscow) Suppl Series A Membrane and Cell Biology 12 (3): 209–222. https://doi.org/10.1134/S1990747818030078
  2. Mitchell JF, Silver A (1963) The spontaneous release of acetylcholine from the denervated hemidiaphragm of the rat. J Physiol 165(1): 117–129. https://doi.org/10.1113/jphysiol.1963.sp007046
  3. Kubasov IV, Krivoi II, Lopatina E V (1994) Effect of exogenous acetylcholine on neuromuscular transmission in the stimulated rat diaphragm. Bull Exp Biol Med 118(5): 1153–1155. https://doi.org/10.1007/BF02444610
  4. Кривой ИИ, Кубасов ИВ, Лопатина ЕВ (1994) Исследование восстановления работоспособности утомляемой диафрагмы крысы после применения экзогенного ацетилхолина. Физиол журн им ИМ Сеченова. 80(9): 61–66. [Krivoi II, Kubasov IV, Lopatina EV (1994) A study of recovery of working ability of the fatugued rat diaphragm after application of exogenous acetylcholine. Physiol J IM Sechenov 80(9): 61–66. (In Russ)].
  5. Кубасов ИВ, Кривой ИИ, Лопатина ЕВ (1994) Исследование влияния экзогенного ацетилхолина на эффективность нервно-мышечной передачи в утомляемой диафрагме крысы. Бюл экспер биол мед 118(11): 457–459. [Kubasov IV, Krivoj II, Lopatina EV (1994) Investigation of the effect of exogenous acetylcholine on the effectiveness of neuromuscular transmission in the fatigued rat diaphragm Bjull jeksper biol med 118(11): 457–459. (In Russ)].
  6. Kubasov IV, Krivoi II, Lopatina EV (1997) The role of Na+, K+-ATPase in the presynaptic aftereffect of exogenous acetylcholine in the rat diaphragm. Bull Exp Biol Med 123(5): 531–534. https://doi.org/10.1007/BF02445319
  7. Krivoi II, Kravtsova VV, Lopatina EV (2000) Hyperpolarizing effect of acetylcholine in the skeletal muscle with different types of muscle fibers. J Evol Biochem Physiol 36(4): 491–494. https://doi.org/10.1007/BF02737001
  8. Кривой ИИ, Лопатина ЕВ, Кравцова ВВ (2001) Роль К+-каналов и Na+,K+-АТФазы в гиперполяризации мембраны скелетных мышечных волокон, вызываемой ацетилхолином. Биол мембр 18(21): 10–15. [Krivoi II, Lopatina EV, Kravtsova VV (2001) Role of K+ channels and Na+,K+-ATPase in acetylcholine-induced hyperpolarization of skeletal muscle fibres. Biol Membr 18(1): 10–15. (In Russ)].
  9. Nikolsky EE, Zemková H, Voronin VA, Vyskocil F (1994) Role of non-quantal acetylcholine release in surplus polarization of mouse diaphragm fibres at the endplate zone. J Physiol 477 (Pt 3): 497–502. https://doi.org/10.1113/jphysiol.1994.sp020210
  10. Hamlyn JM, Blaustein MP, Bova S, DuCharme DW, Harris DW, Mandel F, Mathews WR, Ludens JH (1991) Identification and characterization of a ouabain-like compound from human plasma. Proc Natl Acad Sci U S A 88(14): 6259–6263. https://doi.org/10.1073/pnas.88.14.6259
  11. Blaustein MP, Hamlyn JM (2020) Ouabain, Endogenous Ouabain and Ouabain-like Factors: The Na+ Pump/Ouabain Receptor, its linkage to NCX, and its Myriad Functions. Cell Calcium 86: 102159. https://doi.org/10.1016/j.ceca.2020.102159
  12. Schoner W, Scheiner-Bobis G (2007) Endogenous and exogenous cardiac glycosides and their mechanisms of action. Am J Cardiovasc Drugs 7(3): 173–189. https://doi.org/10.2165/00129784-200707030-00004
  13. Akera TT, Brody M (1976) Inotropic action of digitalis and ion transport. Life Sci 18(2): 135–144. https://doi.org/10.1016/0024-3205(76)90017-5
  14. Dobretsov M, Stimers JR (2005) Neuronal function and alpha3 isoform of the Na/K-ATPase. Front Biosci10: 2373–2396. https://doi.org/10.2741/1704
  15. Cherniavsky LM, Karlish SJ, Garty H (2015) Cardiac glycosides induced toxicity in human cells expressing α1-, α2-, or α3-isoforms of Na-K-ATPase. Am J Physiol Cell Physiol 309(2): 126–135. https://doi.org/10.1152/ajpcell.00089.2015
  16. Лазарев НВ (ред) (1961) Руководство по фармакологии. В 2т. М. Медгиз. [Lazarev NV (red) (1961) Manual of Pharmacology. In 2 V. M. Medgiz. (In Russ)].
  17. Cui X, Xie Z (2017) Protein Interaction and Na/K-ATPase-Mediated Signal Transduction. Molecules 22(6): 1–20. https://doi.org/10.3390/molecules22060990
  18. Yu H, Cui X, Zhang J, Xie JX, Banerjee M, Pierre SV, Xie Z (2018) Heterogeneity of signal transduction by Na-K-ATPase alpha-isoforms: role of Src interaction. Am J Physiol Cell Physiol 314(2): 202–210. https://doi.org/10.1152/ajpcell.00124.2017
  19. Li Z, Cai T, Tian J, Xie J, Zhao X, Liu L, Shapiro JI, Xie Z (2009) NaKtide, a Na/K-ATPase-derived peptide Src inhibitor, antagonizes ouabain-activated signal transduction in cultured cells. J Biol Chemi 284(31): 21066–21076. https://doi.org/10.1074/jbc.M109.013821
  20. Wang Y, Ye Q, Liu C, Xie JX, Yan Y, Lai F, Duan Q, Li X, Tian J, Xie Z (2014) Involvement of Na/K-ATPase in hydrogen peroxide-induced activation of the Src/ERK pathway in LLC-PK1 cells. Free Rad Biol Med 71(31): 415–426. https://doi.org/10.1016/j.freeradbiomed.2014.03.036
  21. Heiny JA, Kravtsova VV, Mandel F, Radzyukevich TL, Benziane B, Prokofiev AV, Pedersen SE, Chibalin AV, Krivoi II (2010) The nicotinic acetylcholine receptor and the Na,K-ATPase α2isoform interact to regulate membrane electrogenesis in skeletal muscle. J Biol Chem 285: 28614–28626. https://doi.org/10.1074/jbc.M110.150961
  22. Chibalin AV, Heiny JA, Benziane B, Prokofiev AV, Vasiliev AN, Kravtsova VV, Krivoi II (2012) Chronic nicotine exposure modifies skeletal muscle Na,K-ATPase activity through its interaction with the nicotinic acetylcholine receptor and phospholemman. PLoS One 7: e33719. https://doi.org/10.1371/journal.pone.0033719
  23. Xie Z., Xie J (2015) The Na/K-ATPase-mediated signal transduction as a target for new drug development. Front Biosci 10: 3100–3109. https://doi.org/10.2741/1766
  24. Nikolsky EE, Oranska TI, Vyskocil F (1996) Nonquantal acetylcholine release in the mouse diaphragm after phrenic nerve crush and during recovery. Exp Physiol 81(3): 341–348. https://doi.org/10.1113/expphysiol.1996.sp003938
  25. Krivoi II, Drabkina TM, Kravtsova VV, Vasiliev AN, Eaton MJ, Skatchkov SN, Mandel F (2006) On the functional interaction between nicotinic acetylcholine receptor and Na+,K+-ATPase. Pflüg Arch Eur J Physiol 452(6): 756–765. https://doi.org/10.1007/s00424-006-0081-6
  26. Cisterna BA, Vargas AA, Puebla C (2020) Active acetylcholine receptors prevent the atrophy of skeletal muscles and favor reinnervation. Nat Commun 11(1): 1073. https://doi.org/10.1038/s41467-019-14063-8
  27. Xie Z, Askari A (2002) Na+/K+-ATPase as a signal transducer Eur J Biochem 269: 2434–2439. https://doi.org/10.1046/j.1432-1033.2002.02910.x
  28. Lopatina EV, Kipenko AV, Pasatetskaya N, Penniyaynen VA, Krylov BV (2016) Modulation of the transducer function of Na+,K+-ATPase: new mechanism of heart remodeling. Canad J Physiol Pharmacol 94(10): 1110–1116. https://doi.org/10.1139/cjpp-2015-0577
  29. Lopatina EV, Karetsky AV, Penniyaynen VA, Vinogradova TV (2008) Role of cardiac glycosides in regulation of the growth of retinal tissue explants. Bull Exp Biol Med 146(12): 651–653. https://doi.org/10.1007/s10517-009-0384-7
  30. Pennijajnen VA, Lopatina EV (2005) Role of Na/K-ATPase in regulation of neurite growth in sensory neurons. Bull Exp Biol Med 139(2): 190–192. https://doi.org/10.1007/s10517-005-0244-z
  31. Маломуж АИ, Никольский ЕЕ (2010) Неквантовое освобождение медиатора: миф или реальность? Успехи физиол наук 41(2): 27–43. [Malomouzh AI, Nikolsky EE (2010) Non-quantal mediator release: myth or reality? Uspekhi Fiziol Nauk 41(2): 27–43. (In Russ)].
  32. Vyskocil F, Vrbova G (1993) Non-quantal release of acetylcholine affects polyneuronal innervation on developing rat muscle fibres. Eur J Neurosci 5: 1677–1683. https://doi.org/10.1111/j.1460-9568.1993.tb00235.x
  33. Lopatina EV, Pennijajnen VA, Zajka AA (2005) Regulatory Role of Na,K-ATPase in the Growth of Heart Tissue Explants in Organotypic Culture. Bull Exp Biol Med 140(8): 150–153. https://doi.org/10.1007/s10517-005-0440-x
  34. Kotova O, Al-Khalili L, Talia S, Hooke C, Fedorova OV, Bagrov AY, Chibalin AV (2006) Cardiotonic steroids stimulate glycogen synthesis in human skeletal muscle cells via a Src- and ERK1/2-dependent mechanism. J Biol Chem 281(29): 20085–20094. https://doi.org/10.1074/jbc.M601577200
  35. Pirkmajer S, Bezjak K, Matkovic U, Dolinar K, Jiang LQ, Mis K, Gros K, Milovanova K, Pirkmajer KP, Mars T, Kapilevich L, Chibalin AV (2020) Ouabain Suppresses IL-6/STAT3 Signaling and Promotes Cytokine Secretion in Cultured Skeletal Muscle Cells. Front Physiol 11: 1–50. https://doi.org/. eCollection 2020https://doi.org/10.3389/fphys.2020.566584
  36. Oliveira TN, Possidonio AC, Soares CP, Ayres R, Costa ML, Quintas LE, Mermelstein C (2015) The role of Na+/K+-ATPase during chick skeletal myogenesis. PLoS One 10(3): e0120940. https://doi.org/10.1371/journal.pone.0120940
  37. Kravtsova VV, Matchkov VV, Bouzinova EV, Vasiliev AN, Razgovorova IA, Heiny JA, Krivoi II (2015) Isoform-specific Na,K-ATPase alterations precede disuse-induced atrophy of rat soleus muscle. Bio Med Res Int 2015: 1–11. https://doi.org/10.1155/2015/720172
  38. Лопатина ЕВ, Поляков ЮИ (2011) Синтетический аналгетик аноцептин: результаты доклинических и клинических исследований. Эфферентная терапия 17(3): 79–81. [Lopatina EV, Poljakov JuI (2011) Synthetic analgesic anoceptin: results of preclinical and clinical studies]. Jefferent Terapija 17(3): 79–81. (In Russ)].

补充文件

附件文件
动作
1. JATS XML
2.

下载 (92KB)
3.

下载 (121KB)
4.

下载 (137KB)
5.

下载 (100KB)
6.

下载 (101KB)

版权所有 © Е.В. Лопатина, А.В. Гавриченко, Н.А. Пасатецкая, 2023

##common.cookie##