YB-1 Protein Prevents Age Decline in Plasma Estradiol in 5xFAD Transgenic Aging Female Mice

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Alzheimer’s disease (AD) is an incurable neurodegenerative disease that is the main cause of dementia in the elderly. When looking for new treatments for AD, attention was drawn to the multifunctional Y-box-binding protein 1 (YB-1). Previously, we revealed a positive effect of intranasal administration of YB-1 on learning and spatial memory, along with a decrease in the content of cerebral β-amyloid and the intensity of plaque initiation, with an improvement in the survival of neurons in the cortex and hippocampus of male AD mice. However, AD affects women twice as often as men, so it is of great interest to study the effects of YB-1 on aging females. Estrogens and androgens are necessary for the maintenance of cognitive function during aging and, apparently, may prevent the development of AD. In this work, peripheral levels of estradiol (E2) and cytokines were studied after intranasal administration of YB-1 to aging female 5xFAD transgenic mice and control non-transgenic animals. In intact aging animals of both groups, a violation of the estrous cycle and a decrease in the level of E2 in blood plasma were revealed. Mice treated with YB-1 did not show a characteristic age-related decrease in plasma E2 levels. The introduction of YB-1 did not affect the peripheral level of cytokines. Thus, a novel, previously undescribed effect of YB-1 on plasma E2 levels in aging female mice is shown. These data indicate that YB-1 may be a promising compound in the prevention and treatment of neurodegenerative diseases. However, further experiments are needed to gain insight into the detailed mechanisms of YB-1 action.

Palavras-chave

Sobre autores

D. Zhdanova

Institute of Cell Biophysics, Russian Academy of Sciences

Email: rimpol@mail.ru
Russia, Moscow region, Pushchino

V. Kovalev

Institute of Cell Biophysics, Russian Academy of Sciences

Email: rimpol@mail.ru
Russia, Moscow region, Pushchino

A. Chaplygina

Institute of Cell Biophysics, Russian Academy of Sciences

Email: rimpol@mail.ru
Russia, Moscow region, Pushchino

N. Bobkova

Institute of Cell Biophysics, Russian Academy of Sciences

Email: rimpol@mail.ru
Russia, Moscow region, Pushchino

R. Poltavtseva

Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology
Ministry of Healthcare of the Russian Federation

Autor responsável pela correspondência
Email: rimpol@mail.ru
Russia, Moscow

G. Sukhikh

Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology
Ministry of Healthcare of the Russian Federation

Email: rimpol@mail.ru
Russia, Moscow

Bibliografia

  1. Kumar A, Singh A, Ekavali (2015) A review on Alzheimer’s disease pathophysiology and its management: An update. Pharmacol Rep 67: 195–203. https://doi.org/10.1016/j.pharep.2014.09.004
  2. Kohno K, Izumi H, Uchiumi T, Ashizuka M, Kuwano M (2003) The pleiotropic functions of the Y-box-binding protein, YB-1. Bioessays 25: 691–698. https://doi.org/10.1002/bies.10300
  3. Skabkin MA, Evdokimova V, Thomas AA, Ovchinnikov LP (2001) The major messenger ribonucleoprotein particle protein p50 (YB-1) promotes nucleic acid strand annealing. J Biol Chem 276: 44841–44847. https://doi.org/10.1074/jbc.m107581200
  4. Skabkin MA, Kiselyova OI, Chernov KG, Sorokin AV, Dubrovin EV, Yaminsky IV, Vasiliev VD, Ovchinnikov LP (2004) Structural organization of mRNA complexes with major core mRNP protein YB-1. Nucleic Acids Res 32: 5621–5635. https://doi.org/10.1093/nar/gkh889
  5. Frye BC, Halfter S, Djudjaj S, Muehlenberg P, Weber S, Raffetseder U, En-Nia A, Knott H, Baron JM, Dooley S, Bernhagen J, Mertens PR (2009) Y-box protein-1 is actively secreted through a non-classical pathway and acts as an extracellular mitogen. EMBO Rep 10: 783–789. https://doi.org/10.1038/embor.2009.81
  6. Moiseeva NI, Stromskaya TP, Rybalkina EY, Vaiman AV, Malyshkina MA, Kim ER, Eliseeva IA, Kulakovskiy IV, Ovchinnikov LP, Stavrovskaya AA (2013) Effects of extracellular YB-1 protein on cultured cells of human breast cancer. Biochem Suppl Ser A Membr Cell Biol 7: 21–28.
  7. Fotovati A, Abu-Ali S, Wang P-S, Deleyrolle LP, Lee C, Triscott J, Chen JY, Franciosi S, Nakamura Y, Sugita Y, Uchiumi T, Kuwano M, Leavitt BR, Singh SK, Jury A, Jones C, Wakimoto H, Reynolds BA, Pallen CJ, Dunn SE (2011) YB-1 bridges neural stem cells and brain tumor-initiating cells via its roles in differentiation and cell growth. Cancer Res 71: 5569–5578. https://doi.org/10.1158/0008-5472.CAN-10-2805
  8. Lu ZH, Books JT, Ley TJ (2005) YB-1 is important for late-stage embryonic development, optimal cellular stress responses, and the prevention of premature senescence. Mol Cell Biol 25: 4625–4637. https://doi.org/10.1128/MCB.25.11.4625-4637.2005
  9. Hanssen L, Frye B, Ostendorf T, Alidousty C, Djudjaj S, Boor P, Rauen T, Floege J, Mertens P, Raffetseder U (2011) Y-Box Binding Protein-1 Mediates Profibrotic Effects of Calcineurin Inhibitors in the Kidney. J Immunol 187: 298–308. https://doi.org/10.4049/jimmunol.1100382
  10. Bobkova NV, Lyabin DN, Medvinskaya NI, Samokhin AN, Nekrasov PV, Nesterova I V, Aleksandrova IY, Tatarnikova OG, Bobylev AG, Vikhlyantsev IM, Kukharsky MS, Ustyugov AA, Polyakov DN, Eliseeva IA, Kretov DA, Guryanov SG, Ovchinnikov LP (2015) The Y-Box Binding Protein 1 Suppresses Alzheimer’s Disease Progression in Two Animal Models. PLoS One 10: e0138867. https://doi.org/10.1371/journal.pone.0138867
  11. Henderson VW, Paganini-Hill A, Miller BL, Elble RJ, Reyes PF, Shoupe D, McCleary CA, Klein RA, Hake AM, Farlow MR (2000) Estrogen for Alzheimer’s disease in women: randomized, double-blind, placebo-controlled trial. Neurology 54(2): 295–301. https://doi.org/10.1212/WNL.54.2.295
  12. Vest RS, Pike CJ (2013) Gender, sex steroid hormones, and Alzheimer’s disease. Horm Behav 63: 301–307. https://doi.org/10.1016/j.yhbeh.2012.04.006
  13. Grimm A, Lim Y-A, Mensah-Nyagan AG, Götz J, Eckert A (2012) Alzheimer’s Disease, Oestrogen and Mitochondria: an Ambiguous Relationship. Mol Neurobiol 46: 151–160. https://doi.org/10.1007/s12035-012-8281-x
  14. Coffey CE, Lucke JF, Saxton JA, Ratcliff G, Unitas LJ, Billig B, Bryan RN (1998) Sex Differences in Brain Aging: A Quantitative Magnetic Resonance Imaging Study. Arch Neurol 55: 169–179. https://doi.org/10.1001/archneur.55.2.169
  15. Morinaga A, Ono K, Takasaki J, Ikeda T, Hirohata M, Yamada M (2011) Effects of sex hormones on Alzheimer’s disease-associated β-amyloid oligomer formation in vitro. Exp Neurol 228: 298–302. https://doi.org/10.1016/j.expneurol.2011.01.011
  16. Veiga S, Melcangi RC, DonCarlos LL, Garcia-Segura LM, Azcoitia I (2004) Sex hormones and brain aging. Exp Gerontol 39: 1623–1631. https://doi.org/10.1016/j.exger.2004.05.008
  17. Barron AM, Pike CJ (2012) Sex hormones, aging, and Alzheimer’s disease. Front Biosci Elit 4 E: 976–997. https://doi.org/10.2741/e434
  18. Maioli S, Leander K, Nilsson P, Nalvarte I (2021) Estrogen receptors and the aging brain. Essays Biochem 65: 913–925. https://doi.org/10.1042/EBC20200162
  19. Chen P, Li B, Ou-Yang L (2022) Role of estrogen receptors in health and disease. Front Endocrinol (Lausanne) 13: 839005. https://doi.org/10.3389/fendo.2022.839005
  20. Dubal DB, Zhu H, Yu J, Rau SW, Shughrue PJ, Merchenthaler I, Kindy MS, Wise PM (2001) Estrogen receptor α, not β, is a critical link in estradiol-mediated protection against brain injury. Proc Natl Acad Sci U S A 98: 1952–1957. https://doi.org/10.1073/pnas.041483198
  21. Pérez SE, Chen EY, Mufson EJ (2003) Distribution of estrogen receptor alpha and beta immunoreactive profiles in the postnatal rat brain. Dev Brain Res 145: 117–139. https://doi.org/10.1016/S0165-3806(03)00223-2
  22. Hazell GGJ, Yao ST, Roper JA, Prossnitz ER, O’Carroll AM, Lolait SJ (2009) Localisation of GPR30, a novel G protein-coupled oestrogen receptor, suggests multiple functions in rodent brain and peripheral tissues. J Endocrinol 202: 223–236. https://doi.org/10.1677/JOE-09-0066
  23. Luoma JI, Boulware MI, Mermelstein PG (2008) Caveolin proteins and estrogen signaling in the brain. Mol Cell Endocrinol 290: 8–13. https://doi.org/10.1016/j.mce.2008.04.005
  24. Bjornstrom L, Sjoberg M (2005) Mechanisms of estrogen receptor signaling: convergence of genomic and nongenomic actions on target genes. Mol Endocrinol 19(4): 833–842. https://doi.org/10.1210/me.2004-0486
  25. Gordon JL, Peltier A, Grummisch JA, Sykes Tottenham L (2019) Estradiol fluctuation, sensitivity to stress, and depressive symptoms in the menopause transition: a pilot study. Front Psychol 10: 1319. https://doi.org/10.3389/fpsyg.2019.01319
  26. Carugno J (2020) Clinical management of vaginal bleeding in postmenopausal women. Climacteric 23(4): 343–349. https://doi.org/10.1080/13697137.2020.1739642
  27. Mueck AO, Römer T (2019) Choice of progestogen for endometrial protection in combination with transdermal estradiol in menopausal women. Horm Mol Biol Clin Invest 37(2). https://doi.org/10.1515/hmbci-2018-0033
  28. Duarte-Guterman P, Lieblich SE, Chow C, Galea LAM (2015) Estradiol and GPER Activation Differentially Affect Cell Proliferation but Not GPER Expression in the Hippocampus of Adult Female Rats. PLoS One 10: e0129880. https://doi.org/10.1371/journal.pone.0129880
  29. Aenlle K, Cui L, Jackson T, Foster T (2007) Estrogen effects on cognition and hippocampal transcription in middle-aged mice. Neurobiol Aging 30: 932–945. https://doi.org/10.1016/j.neurobiolaging.2007.09.004
  30. Fan L, Zhao Z, Orr PT, Chambers CH, Lewis MC, Frick KM (2010) Estradiol-induced object memory consolidation in middle-aged female mice requires dorsal hippocampal extracellular signal-regulated kinase and phosphatidylinositol 3-kinase activation. J Neurosci 30: 4390–4400. https://doi.org/10.1523/JNEUROSCI.4333-09.2010
  31. Walf AA, Paris JJ, Frye CA (2009) Chronic estradiol replacement to aged female rats reduces anxiety-like and depression-like behavior and enhances cognitive performance. Psychoneuroendocrinology 34(6): 909–916. https://doi.org/10.1016/j.psyneuen.2009.01.004
  32. Cui J, Reed J, Crynen G, Ait-Ghezala G, Crawford F, Shen Y, Li R (2019) Proteomic Identification of Pathways Responsible for the Estradiol Therapeutic Window in AD Animal Models. Front Cell Neurosci 13: 437. https://doi.org/10.3389/fncel.2019.004
  33. Sahab-Negah S, Hajali V, Moradi HR, Gorji A (2020) The Impact of Estradiol on Neurogenesis and Cognitive Functions in Alzheimer’s Disease. Cell Mol Neurobiol 40: 283–299. https://doi.org/10.1007/s10571-019-00733-0
  34. Cardinali CAEF, Martins YA, Torrão AS (2021) Use of Hormone Therapy in Postmenopausal Women with Alzheimer’s Disease: A Systematic Review. Drugs Aging 38: 769–791. https://doi.org/10.1007/s40266-021-00878-y
  35. Grammas P (2011) Neurovascular dysfunction, inflammation and endothelial activation: implications for the pathogenesis of Alzheimer’s disease. J Neuroinflammat 8: 26. https://doi.org/10.1186/1742-2094-8-26
  36. Ferreira ST, Clarke JR, Bomfim TR, De Felice FG (2014) Inflammation, defective insulin signaling, and neuronal dysfunction in Alzheimer’s disease. Alzheimers Dement 10: S76–S83. https://doi.org/10.1016/j.jalz.2013.12.010
  37. Walters A, Phillips E, Zheng R, Biju M, Kuruvilla T (2016) Evidence for neuroinflammation in Alzheimer’s disease. Prog Neurol Psychiatry 20: 25–31. https://doi.org/10.1002/pnp.444
  38. Meraz-Ríos MA, Toral-Rios D, Franco-Bocanegra D, Villeda-Hernández J, Campos-Peña V (2013) Inflammatory process in Alzheimer’s Disease. Front Integr Neurosci 7: 59. https://doi.org/10.3389/fnint.2013.00059
  39. Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper N, Eikelenboom P, Emmerling M, Fiebich B, Finch C, Frautschy S, Griffin W, Hampel H, Hull M, Landreth G, Lue L, Mrak R, Mackenzie I, Mcgeer P, O’Banion M, Pachter J, Pasinetti G, Plata-salamán C, Rogers J, Rydel R, Yong Shen, Streit W, Strohmeyer R, Tooyoma Ikuo, Muiswinkel FL, Veerhuis R, Walker D, Webster S, Wegrzyniak B., Wenk G, Wyss-Coray T (2000) Inflammation and Alzheimer’s disease. Neurobiol Aging 21(3): 383–421. https://doi.org/10.1016/S0197-4580(00)00124-X
  40. O’Léime C, Cryan J, Nolan Y (2017) Nuclear Deterrents: Intrinsic Regulators of IL-1β-induced Effects on Hippocampal Neurogenesis. Brain Behav Immun 66: 394–412. https://doi.org/10.1016/j.bbi.2017.07.153
  41. Khaksari M, Soltani Z, Shahrokhi N (2018) Effects of Female Sex Steroids Administration on Pathophysiologic Mechanisms in Traumatic Brain Injury. Transl Stroke Res 9:393–416. https://doi.org/10.1007/s12975-017-0588-5
  42. Wang M, Tsai BM, Reiger KM, Brown JW, Meldrum DR (2006) 17-β-Estradiol decreases p38 MAPK-mediated myocardial inflammation and dysfunction following acute ischemia. J Mol Cell Cardiol 40(2): 205–212. https://doi.org/10.1016/j.yjmcc.2005.06.019
  43. Cuzzocrea S, Santagati S, Sautebin L, Mazzon E, Calabrò G, Serraino I, Caputi AP, Maggi A (2000) 17β-estradiol antiinflammatory activity in carrageenan-induced pleurisy. Endocrinology 141(4): 1455–1463. https://doi.org/10.1210/endo.141.4.7404
  44. Borrás C, Gambini J, López-Grueso R, Pallardó FV, Viña J (2010) Direct antioxidant and protective effect of estradiol on isolated mitochondria. Biochim Biophys Acta (BBA)-Mol Basis Disease 1802(1): 205–211. https://doi.org/10.1016/j.bbadis.2009.09.007
  45. Oakley HO, Cole SL, Logan S, Maus E, Shao P, Craft J, Guillozet-Bongaarts A, Ohno M, Disterhoft J, Van Eldik L, Berry R, Vassar R (2006) Intraneuronal β-Amyloid Aggregates, Neurodegeneration, and Neuron Loss in Transgenic Mice with Five Familial Alzheimer’s Disease Mutations: Potential Factors in Amyloid Plaque Formation. J Neurosci 26: 10129–10140. https://doi.org/10.1523/JNEUROSCI.1202-06.2006
  46. McLean AC, Valenzuela N, Fai S, Bennett SAL (2012) Performing vaginal lavage, crystal violet staining, and vaginal cytological evaluation for mouse estrous cycle staging identification. J Vis Exp e4389. https://doi.org/10.3791/4389
  47. Farré M, Kuster M, Brix R, Rubio F, de Alda MJL, Barceló D (2007) Comparative study of an estradiol enzyme-linked immunosorbent assay kit, liquid chromatography–tandem mass spectrometry, and ultra performance liquid chromatography–quadrupole time of flight mass spectrometry for part-per-trillion analysis of estrogens in water samples. J Chromatogr A 1160(1-2): 166–175. https://doi.org/10.1016/j.chroma.2007.05.032
  48. Nilsson ME, Vandenput L, Tivesten Å, Norlén A-K, Lagerquist MK, Windahl SH, Börjesson AE, Farman HH, Poutanen M, Benrick A, Maliqueo M, Stener-Victorin E, Ryberg H, Ohlsson C (2015) Measurement of a Comprehensive Sex Steroid Profile in Rodent Serum by High-Sensitive Gas Chromatography-Tandem Mass Spectrometry. Endocrinology 156: 2492–2502. https://doi.org/10.1210/en.2014-1890
  49. Evgen’ev M, Bobkova N, Krasnov G, Garbuz D, Funikov S, Kudryavtseva A, Kulikov A, Samokhin A, Maltsev A, Nesterova I (2019) The Effect of Human HSP70 Administration on a Mouse Model of Alzheimer’s Disease Strongly Depends on Transgenicity and Age. J Alzheimer’s Dis 67: 1391–1404. https://doi.org/10.3233/JAD-180987
  50. Carroll JC, Rosario ER, Chang L, Stanczyk FZ, Oddo S, LaFerla FM, Pike CJ (2007) Progesterone and Estrogen Regulate Alzheimer-Like Neuropathology in Female 3xTg-AD Mice. J Neurosci 27(48): 13357–13365. https://doi.org/10.1523/JNEUROSCI.2718-07.2007
  51. Yun J, Jun I, Ju C, Choi D, Im H, Youg J (2018) Brain, Behavior, and Immunity Estrogen deficiency exacerbates Aβ-induced memory impairment through enhancement of neuroinflammation, amyloidogenesis and NF-ĸB activation in ovariectomized mice. Brain Behav Immun 73: 282–293. https://doi.org/10.1016/j.bbi.2018.05.013
  52. Murphy DD, Segal M (1997) Morphological plasticity of dendritic spines in central neurons is mediated by activation of cAMP response element binding protein. Proc Natl Acad Sci U S A 94(4): 1482–1487. https://doi.org/10.1073/pnas.94.4.1482
  53. Aenlle KK, Foster TC (2010) Aging alters the expression of genes for neuroprotection and synaptic function following acute estradiol treatment. Hippocampus 20: 1047–1060. https://doi.org/10.1002/hipo.20703
  54. Nilsen J, Chen S, Irwin RW, Iwamoto S, Brinton RD (2006) Estrogen protects neuronal cells from amyloid beta-induced apoptosis via regulation of mitochondrial proteins and function. BMC Neurosci 7(1): 1–14. https://doi.org/10.1186/1471-2202-7-74
  55. Yao J, Brinton RD (2012) Estrogen regulation of mitochondrial bioenergetics: implications for prevention of Alzheimer’s disease. Advance Pharmacol 64: 327–371. https://doi.org/10.1016/B978-0-12-394816-8.00010-6
  56. Donaubauer EM, Hunzicker-Dunn ME (2016) Extracellular Signal-regulated Kinase (ERK)-dependent Phosphorylation of Y-Box-binding Protein 1 (YB-1) Enhances Gene Expression in Granulosa Cells in Response to Follicle-stimulating Hormone (FSH). J Biol Chem 291: 12145–12160. https://doi.org/10.1074/jbc.M115.705368
  57. Kim JY, Mo H, Kim J, Kim JW, Nam Y, Rim YA, Ju JH (2022) Mitigating Effect of Estrogen in Alzheimer’s Disease-Mimicking Cerebral Organoid. Front Neurosci 16: 816174. https://doi.org/10.3389/fnins.2022.816174
  58. Boza-Serrano A, Yang Y, Paulus A, Deierborg T (2018) Innate immune alterations are elicited in microglial cells before plaque deposition in the Alzheimer’s disease mouse model 5xFAD. Sci Rep 8: 1550. https://doi.org/10.1038/s41598-018-19699-y
  59. Hanzel CE, Pichet-Binette A, Pimentel LSB, Iulita MF, Allard S, Ducatenzeiler A, Do Carmo S, Cuello AC (2014) Neuronal driven pre-plaque inflammation in a transgenic rat model of Alzheimer’s disease. Neurobiol Aging 35: 2249–2262. https://doi.org/10.1016/j.neurobiolaging.2014.03.026
  60. López-González I, Schlüter A, Aso E, Garcia-Esparcia P, Ansoleaga B, Lorens F, Carmona M, Moreno J, Fuso A, Portero-Otin M, Pamplona R, Pujol A, Ferrer I (2015) Neuroinflammatory signals in Alzheimer disease and APP/PS1 transgenic mice: correlations with plaques, tangles, and oligomeric species. J Neuropathol Exp Neurol 74: 319–344. https://doi.org/10.1097/NEN.0000000000000176
  61. Jiang Y, Li K, Li X, Xu L, Yang Z (2021) Sodium butyrate ameliorates the impairment of synaptic plasticity by inhibiting the neuroinflammation in 5XFAD mice. Chem-Biol Interact 341: 109452. https://doi.org/10.1016/j.cbi.2021.109452
  62. Park J-C, Han S-H, Mook-Jung I (2020) Peripheral inflammatory biomarkers in Alzheimer’s disease: a brief review. BMB Rep 53: 10–19. https://doi.org/10.5483/BMBRep.2020.53.1.309
  63. Forlenza OV, Diniz BS, Talib LL, Mendonça VA, Ojopi EB, Gattaz WF, Teixeira A L (2009) Increased serum IL-1β level in Alzheimer’s disease and mild cognitive impairment. Dementia and Geriatric Cognitive Disorders 28(6): 507–512. https://doi.org/10.1159/000255051
  64. Swardfager W, Lanctôt K, Rothenburg L, Wong A, Cappell J, Herrmann N (2010) A meta-analysis of cytokines in Alzheimer’s disease. Biol Psychiatr 68(10): 930–941. https://doi.org/10.1016/j.biopsych.2010.06.012
  65. Wu YY, Hsu JL, Wang HC, Wu SJ, Hong CJ, Cheng IHJ (2015) Alterations of the neuroinflammatory markers IL-6 and TRAIL in Alzheimer’s disease. Dement Geriatr Cogn Dis Extra 5(3): 424–434. https://doi.org/10.1159/000439214
  66. Richartz E, Stransky E, Batra A, Simon P, Lewczuk P, Buchkremer G, Bartels M, Schott K (2005) Decline of immune responsiveness: a pathogenetic factor in Alzheimer’s disease? J Psychiatr Res 39(5): 535–543. https://doi.org/10.1016/j.jpsychires.2004.12.005

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (41KB)

Declaração de direitos autorais © Д.Ю. Жданова, В.И. Ковалев, А.В. Чаплыгина, Н.В. Бобкова, Р.А. Полтавцева, Г.Т. Сухих, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies