Метаанализ экспериментальных исследований влияния монотерапии мелатонином на уровень циркулирующих триглицеридов, холестерина, глюкозы и инсулина в зависимости от диеты крыс

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Известно, что мелатонин модулирует суточные и сезонные ритмы метаболизма. Однако до сих пор неясен эффект продолжительного приема экзогенного мелатонина на параметры липидного и углеводного обмена при различных диетах. В данной работе мы провели метаанализ 53 публикаций, исследующих влияние монотерапии мелатонином на показатели липидного и углеводного обмена у крыс, содержащихся на стандартной диете (44 публикации), а также на диетах с повышенным содержанием фруктозы (7 публикаций), жиров (11 публикаций) и холестерина (5 публикаций). По литературным данным диета, обогащенная фруктозой, вызывала у крыс существенное повышение уровня триглицеридов, глюкозы и инсулина. У крыс, находящихся на диете, обогащенной жирами, наблюдалось увеличение уровня триглицеридов, общего холестерина (ОХ), инсулина и снижение концентрации липопротеинов высокой плотности (ЛВП). У крыс, содержащихся на диете, обогащенной холестерином, наблюдалось увеличение уровня ОХ и снижение концентрации ЛВП. Терапия мелатонином снижала уровень триглицеридов, ОХ и инсулина, но не изменяла уровень глюкозы у крыс, содержащихся на диетах, обогащенных фруктозой и жирами. При диете, обогащенной холестерином, мелатонин (без учета дозы) снижал уровень ОХ и увеличивал уровень ЛВП и глюкозы, но не изменял концентрацию триглицеридов. Наш метаанализ не выявил положительного эффекта увеличения дозы мелатонина при обогащенных диетах. При стандартной диете длительная терапия мелатонином также снижала уровень инсулина, но не оказывала влияния на ОХ и увеличивала уровень глюкозы. Ухудшение показателей углеводного обмена было ассоциировано с более высокими дозами мелатонина в начале терапии, с внутрибрюшинным введением или с введением через желудочный зонд, с введением в светлую фазу. Кроме того, высокие дозы мелатонина были ассоциированы с ухудшением показателей липидного обмена при стандартной диете. Эффект мелатонина был направлен в сторону минимизации изменений в липидном профиле, вызванных диетой, что подтверждает гомеостатическую роль мелатонина в метаболизме липидов.

Об авторах

Н. В. Кузьменко

Национальный медицинский исследовательский центр им. В.А. Алмазова Минздрава России; Первый Санкт-Петербургский государственный медицинский университет
им. академика И.П. Павлова, Минздрава России

Автор, ответственный за переписку.
Email: nat.kuzmencko2011@yandex.ru
Россия, Санкт-Петербург; Россия, Санкт-Петербург

В. А. Цырлин

Национальный медицинский исследовательский центр им. В.А. Алмазова Минздрава России

Email: nat.kuzmencko2011@yandex.ru
Россия, Санкт-Петербург

М. Г. Плисс

Национальный медицинский исследовательский центр им. В.А. Алмазова Минздрава России; Первый Санкт-Петербургский государственный медицинский университет
им. академика И.П. Павлова, Минздрава России

Email: nat.kuzmencko2011@yandex.ru
Россия, Санкт-Петербург; Россия, Санкт-Петербург

Список литературы

  1. Mohammadi-Sartang M, Ghorbani M, Mazloom Z (2018) Effects of melatonin supplementation on blood lipid concentrations: A systematic review and meta-analysis of randomized controlled trials. Clin Nutr 37 (6 Pt A): 1943–1954. https://doi.org/10.1016/j.clnu.2017.11.003
  2. Loloei S, Sepidarkish M, Heydarian A, Tahvilian N, Khazdouz M, Heshmati J, Pouraram H (2019) The effect of melatonin supplementation on lipid profile and anthropometric indices: A systematic review and meta-analysis of clinical trials. Diabetes Metab Syndr 13 (3): 1901–1910. https://doi.org/10.1016/j.dsx.2019.04.043
  3. Lauritzen ES, Kampmann U, Smedegaard SB, Støy J (2021) Effects of daily administration of melatonin before bedtime on fasting insulin, glucose and insulin sensitivity in healthy adults and patients with metabolic diseases. A systematic review and meta-analysis. Clin Endocrinol (Oxf) 95 (5): 691–701. https://doi.org/10.1111/cen.14576
  4. Delpino FM, Figueiredo LM, Nunes BP (2021) Effects of melatonin supplementation on diabetes: A systematic review and meta-analysis of randomized clinical trials. Clin Nutr 40 (7): 4595–4605. https://doi.org/10.1016/j.clnu.2021.06.007
  5. Acuña-Castroviejo D, Escames G, Venegas C, Díaz-Casado ME, Lima-Cabello E, López LC, Rosales-Corral S, Tan DX, Reiter RJ (2014) Extrapineal melatonin: sources, regulation, and potential functions. Cell Mol Life Sci 71 (16): 2997–3025. https://doi.org/10.1007/s00018-014-1579-2
  6. Karolczak K, Watala C (2019) The Mystery behind the Pineal Gland: Melatonin Affects the Metabolism of Cholesterol. Oxid Med Cell Longev : 4531865. https://doi.org/10.1155/2019/4531865
  7. Guan Q, Wang Z, Cao J, Dong Y, Chen Y (2021) Mechanisms of Melatonin in Obesity: A Review. Int J Mol Sci 23 (1): 218. https://doi.org/10.3390/ijms23010218
  8. Dardente H, Wyse CA, Birnie MJ, Dupré SM, Loudon A.S, Lincoln GA, Hazlerigg DG (2010) A molecular switch for photoperiod responsiveness in mammals. Curr Biol 20 (24): 2193–2198. https://doi.org/10.1016/j.cub.2010.10.048
  9. Chitimus DM, Popescu MR, Voiculescu SE, Panaitescu AM, Pavel B, Zagrean L, Zagrean AM (2020) Melatonin’s Impact on Antioxidative and Anti-Inflammatory Reprogramming in Homeostasis and Disease. Biomolecules10 (9): 1211. https://doi.org/10.3390/biom1009121
  10. Wang Y, Liu X, Wang W, Song W, Chen L, Fang Q, Yan X (2013) The expression of inflammatory cytokines on the aorta endothelia are up-regulated in pinealectomized rats. Inflammation 36 (6): 1363–1373. https://doi.org/10.1007/s10753-013-9676-1
  11. Santos RMD, Marani F, Chiba FY, Mattera MSLC, Tsosura TVS, Tessarin GWL, Pereira RF, Belardi BE, Pinheiro BCES, Sumida DH (2018) Melatonin promotes reduction in TNF levels and improves the lipid profile and insulin sensitivity in pinealectomized rats with periodontal disease. Life Sci 213: 32–39. https://doi.org/10.1016/j.lfs.2018.09.056
  12. McMullan CJ, Curhan GC, Schernhammer ES, Forman JP (2013) Association of nocturnal melatonin secretion with insulin resistance in nondiabetic young women. Am J Epidemiol 178 (2): 231–238. https://doi.org/10.1093/aje/kws470
  13. McMullan CJ, Schernhammer ES, Rimm EB, Hu FB, Forman JP (2013) Melatonin secretion and the incidence of type 2 diabetes. JAMA 309 (13): 1388–1396. https://doi.org/10.1001/jama.2013.2710
  14. Borenstein M, Hedges LV, Higgins JPT, Rothstein HR (2009) Introduction to Meta-analysis. Wiley: Chichester.
  15. Abdulwahab DA, El-Missiry MA, Shabana S, Othman AI, Amer ME (2021) Melatonin protects the heart and pancreas by improving glucose homeostasis, oxidative stress, inflammation and apoptosis in T2DM-induced rats. Heliyon 7 (3): e06474. https://doi.org/10.1016/j.heliyon.2021.e06474
  16. Adeyemi WJ, Abdussalam TA, Abdulrahim A, Olayaki LA (2020) Elevated, sustained, and yet reversible biotoxicity effects of lead on cessation of exposure: Melatonin is a potent therapeutic option. Toxicol Ind Health 36 (7): 477–486. https://doi.org/10.1177/0748233720937199
  17. Ahmed HH, Mannaa F, Elmegeed GA, Doss SH (2005) Cardioprotective activity of melatonin and its novel synthesized derivatives on doxorubicin-induced cardiotoxicity. Bioorg Med Chem 13 (5): 1847–1457. https://doi.org/10.1016/j.bmc.2004.10.066
  18. Alqasim AA, Nour Eldin EEM, Hammadi SH, Esheba GE (2020) Comparing the renoprotective effects of the antioxidants melatonin, vitamin D and vitamin E in diabetic rats. J Taibah Univ Med Sci 15 (5): 351–357. https://doi.org/10.1016/j.jtumed.2020.05.007
  19. Aoyama H, Mori N, Mori W (1987) Anti-glucocorticoid effects of melatonin on adult rats. Acta Pathol Jpn 37 (7): 1143–1148. https://doi.org/10.1111/j.1440-1827.1987.tb00431.x
  20. Aydin M, Oktar S, Ozkan OV, Alçin E, Oztürk OH, Nacar A (2011) Letrozole induces hepatotoxicity without causing oxidative stress: the protective effect of melatonin. Gynecol Endocrinol 27 (4): 209–215. https://doi.org/10.3109/09513590.2010.488769
  21. Benova T, Viczenczova C, Radosinska J, Bacova B, Knezl V, Dosenko V, Weismann P, Zeman M, Navarova J, Tribulova N (2013) Melatonin attenuates hypertension-related proarrhythmic myocardial maladaptation of connexin-43 and propensity of the heart to lethal arrhythmias. Can J Physiol Pharmacol 91 (8): 633–639. https://doi.org/10.1139/cjpp-2012-0393
  22. Bernasconi PA, Cardoso NP, Reynoso R, Scacchi P, Cardinali DP (2013) Melatonin and diet-induced metabolic syndrome in rats: impact on the hypophysial-testicular axis. Horm Mol Biol Clin Investig16 (2): 101–112. https://doi.org/10.1515/hmbci-2013-0005
  23. Bojková B, Orendás P, Friedmanová L, Kassayová M, Datelinka I, Ahlersová E, Ahlers I (2008) Prolonged melatonin administration in 6-month-old Sprague-Dawley rats: metabolic alterations. Acta Physiol Hung 95 (1): 65–76. https://doi.org/10.1556/APhysiol.95.2008.4
  24. Butun I, Ekmekci H, Ciftci O, Sonmez H, Caner M, Altug T, Kokoglu E (2013) The effects of different doses of melatonin on lipid peroxidation in diet-induced hypercholesterolemic rats. Bratisl Lek Listy 114 (3): 129–132. https://doi.org/10.4149/bll_2013_028
  25. Cam M, Yavuz O, Guven A, Ercan F, Bukan N, Ustündag N (2003) Protective effects of chronic melatonin treatment against renal injury in streptozotocin-induced diabetic rats. J Pineal Res 35 (3): 212–220. https://doi.org/10.1034/j.1600-079x.2003.00082.x
  26. Cardinali DP, Bernasconi PA, Reynoso R, Toso CF, Scacchi P (2013) Melatonin may curtail the metabolic syndrome: studies on initial and fully established fructose-induced metabolic syndrome in rats. Int J Mol Sci 14 (2): 2502–2514. https://doi.org/10.3390/ijms14022502
  27. Chan TY, Tang PL (1995) Effect of melatonin on the maintenance of cholesterol homeostasis in the rat. Endocr Res 21 (3): 681–696. https://doi.org/10.1080/07435809509030483
  28. Chuffa LG, Amorim JP, Teixeira GR, Mendes LO, Fioruci BA, Pinheiro PF, Seiva FR, Novelli EL, Mello Júnior W, Martinez M, Martinez FE (2011) Long-term melatonin treatment reduces ovarian mass and enhances tissue antioxidant defenses during ovulation in the rat. Braz J Med Biol Res 44 (3): 217–223. https://doi.org/10.1590/s0100-879x2011007500018
  29. Djordjevic B, Cvetkovic T, Stoimenov TJ, Despotovic M, Zivanovic S, Basic J, Veljkovic A, Velickov A, Kocic G, Pavlovic D, Sokolovic D (2018) Oral supplementation with melatonin reduces oxidative damage and concentrations of inducible nitric oxide synthase, VEGF and matrix metalloproteinase 9 in the retina of rats with streptozotocin/nicotinamide induced pre-diabetes. Eur J Pharmacol 833: 290–297. https://doi.org/10.1016/j.ejphar.2018.06.011
  30. Ebaid H, Bashandy SA, Alhazza IM, Rady A, El-Shehry S (2013) Folic acid and melatonin ameliorate carbon tetrachloride-induced hepatic injury, oxidative stress and inflammation in rats. Nutr Metab (Lond) 10 (1): 20. https://doi.org/10.1186/1743-7075-10-20
  31. Ewida SF, Al-Sharaky DR (2016) Implication of Renal Aquaporin-3 in Fructose-Induced Metabolic Syndrome and Melatonin Protection. J Clin Diagn Res 10 (4): CF06–CF11. https://doi.org/10.7860/JCDR/2016/18362.7656
  32. Görgün FM, Oztürk Z, Gümüştaş MK, Kökogu E (2002) Melatonin administration affects plasma total sialic acid and lipid peroxidation levels in streptozotocin induced diabetic rats. J Toxicol Environ Health A 65 (10): 695–700. https://doi.org/10.1080/00984100290071045
  33. Hajam YA, Rai S (2019) Melatonin and insulin modulates the cellular biochemistry, histoarchitecture and receptor expression during hepatic injury in diabetic rats. Life Sci 239:117046.https://doi.org/10.1016/j.lfs.2019.117046
  34. Hoyos M, Guerrero JM, Perez-Cano R, Olivan J, Fabiani F, Garcia-Pergañeda A, Osuna C (2000) Serum cholesterol and lipid peroxidation are decreased by melatonin in diet-induced hypercholesterolemic rats. J Pineal Res 28 (3): 150–155. https://doi.org/10.1034/j.1600-079x.2001.280304.x
  35. Kadry SM, El-Dakdoky MH, Haggag NZ, Rashed LA, Hassen MT (2018) Melatonin improves the therapeutic role of mesenchymal stem cells in diabetic rats. Toxicol Mech Methods 28 (7): 529–538. https://doi.org/10.1080/15376516.2018.1471634
  36. Kamsrijai U, Wongchitrat P, Nopparat C, Satayavivad J, Govitrapong P (2020) Melatonin attenuates streptozotocin-induced Alzheimer-like features in hyperglycemic rats. Neurochem Int 132: 104601. https://doi.org/10.1016/j.neuint.2019.104601
  37. Kantar Ş, Türközkan N, Bircan FS, Paşaoğlu ÖT (2015) Beneficial effects of melatonin on serum nitric oxide, homocysteine, and ADMA levels in fructose-fed rats. Pharm Biol 53 (7): 1035–1041. https://doi.org/10.3109/13880209.2014.957782
  38. Khalil SS, Aziz JA, Ismail KA, El-Malkey NF (2021) Comparative protective effects of N-acetylcysteine and melatonin against obesity-induced testicular dysfunction in rats. Can J Physiol Pharmacol 99 (7): 708–719. https://doi.org/10.1139/cjpp-2020-0499
  39. Kim C, Kim N, Joo H, Youm JB, Park WS, Cuong DV, Park YS, Kim E, Min CK, Han J (2005) Modulation by melatonin of the cardiotoxic and antitumor activities of adriamycin. J Cardiovasc Pharmacol 46 (2): 200–210. https://doi.org/10.1097/01.fjc.0000171750.97822.a2
  40. Kitagawa A, Ohta Y, Ohashi K (2012) Melatonin improves metabolic syndrome induced by high fructose intake in rats. J Pineal Res 52 (4): 403–413. https://doi.org/10.1111/j.1600-079X.2011.00955.x
  41. Korkmaz GG, Uzun H, Cakatay U, Aydin S (2012) Melatonin ameliorates oxidative damage in hyperglycemia-induced liver injury. Clin Invest Med 35 (6): E370–E377. https://doi.org/10.25011/cim.v35i6.19209
  42. Leibowitz A, Peleg E, Sharabi Y, Shabtai Z, Shamiss A, Grossman E (2008) The role of melatonin in the pathogenesis of hypertension in rats with metabolic syndrome. Am J Hypertens 21 (3): 348–351. https://doi.org/10.1038/ajh.2007.60
  43. Li T, Ni L, Zhao Z, Liu X, Lai Z, Di X, Xie Z, Song X, Wang X, Zhang R, Liu C (2018) Melatonin attenuates smoking-induced hyperglycemia via preserving insulin secretion and hepatic glycogen synthesis in rats. J Pineal Res 64 (4): e12475. https://doi.org/10.1111/jpi.12475
  44. Mendes C, Lopes AM, do Amaral FG, Peliciari-Garcia RA, Turati Ade O, Hirabara SM, Scialfa Falcão JH, Cipolla-Neto J (2013) Adaptations of the aging animal to exercise: role of daily supplementation with melatonin. J Pineal Res 55 (3): 229–239. https://doi.org/10.1111/jpi.12065
  45. Montano ME, Molpeceres V, Mauriz JL, Garzo E, Cruz IB, González P, Barrio JP (2010) Effect of melatonin supplementation on food and water intake in streptozotocin-diabetic and non-diabetic male Wistar rats. Nutr Hosp 25 (6): 931–938.
  46. Montilla PL, Vargas JF, Túnez IF, Muñoz de Agueda MC, Valdelvira ME, Cabrera ES (1998) Oxidative stress in diabetic rats induced by streptozotocin: protective effects of melatonin. J Pineal Res 25 (2): 94–100. https://doi.org/10.1111/j.1600-079x.1998.tb00545.x
  47. Mori N, Aoyama H, Murase T, Mori W (1989) Anti-hypercholesterolemic effect of melatonin in rats. Acta Pathol Jpn 39 (10): 613–618. https://doi.org/10.1111/j.1440-1827.1989.tb02407.x
  48. Mustonen AM, Nieminen P, Hyvärinen H (2002) Effects of continuous light and melatonin treatment on energy metabolism of the rat. J Endocrinol Invest 25 (8): 716–723. https://doi.org/10.1007/BF03345106
  49. Nduhirabandi F, Du Toit EF, Blackhurst D, Marais D, Lochner A (2011) Chronic melatonin consumption prevents obesity-related metabolic abnormalities and protects the heart against myocardial ischemia and reperfusion injury in a prediabetic model of diet-induced obesity. J Pineal Res 50 (2): 171–182. https://doi.org/10.1111/j.1600-079X.2010.00826.x
  50. Obayemi MJ, Akintayo CO, Oniyide AA, Aturamu A, Badejogbin OC, Atuma CL, Saidi AO, Mahmud H, Olaniyi KS (2021) Protective role of melatonin against adipose-hepatic metabolic comorbidities in experimentally induced obese rat model. PLoS One 16 (12): e0260546. https://doi.org/10.1371/journal.pone.0260546
  51. Oladele CA, Akintayo CO, Badejogbin OC, Oniyide AA, Omoaghe AO, Agunbiade TB, Olaniyi KS (2022) Melatonin ameliorates endocrine dysfunction and defective sperm integrity associated with high-fat diet-induced obesity in male Wistar rats. Andrologia 54 (1): e14242. https://doi.org/10.1111/and.14242
  52. Ovali MA, Oztopuz O, Vardar SA (2021) Melatonin ameliorates cardiac remodelling in fructose-induced metabolic syndrome rat model by using genes encoding cardiac potassium ion channels. Mol Biol Rep 48 (8): 5811–5819. https://doi.org/10.1007/s11033-021-06526-3
  53. Paskaloglu K, Sener G, Ayanğolu-Dülger G (2004) Melatonin treatment protects against diabetes-induced functional and biochemical changes in rat aorta and corpus cavernosum. Eur J Pharmacol 499 (3): 345–354. https://doi.org/10.1016/j.ejphar.2004.08.002
  54. Peschke E, Schucht H, Mühlbauer E (2010) Long-term enteral administration of melatonin reduces plasma insulin and increases expression of pineal insulin receptors in both Wistar and type 2-diabetic Goto-Kakizaki rats. J Pineal Res 49 (4): 373–381. https://doi.org/10.1111/j.1600-079X.2010.00804.x
  55. Prunet-Marcassus B, Desbazeille M, Bros A, Louche K, Delagrange P, Renard P, Casteilla L, Pénicaud L (2003) Melatonin reduces body weight gain in Sprague Dawley rats with diet-induced obesity. Endocrinology 144 (12): 5347–5352. https://doi.org/10.1210/en.2003-0693
  56. Rao MV, Purohit A, Patel T (2010) Melatonin protection on mercury-exerted brain toxicity in the rat. Drug Chem Toxicol 33 (2): 209–216. https://doi.org/10.3109/01480540903349258
  57. Ríos-Lugo MJ, Cano P, Jiménez-Ortega V, Fernández-Mateos MP, Scacchi PA, Cardinali DP, Esquifino AI (2010) Melatonin effect on plasma adiponectin, leptin, insulin, glucose, triglycerides and cholesterol in normal and high fat-fed rats. J Pineal Res 49 (4): 342–348. https://doi.org/10.1111/j.1600-079X.2010.00798.x
  58. Sankaran M, Subramanian P (2006) Modulation of biochemical circadian rhythms during long-term melatonin treatment in rats. Singapore Med J 47 (1): 424–427.
  59. Sener G, Sehirli O, Yegen BC, Cetinel S, Gedik N, Sakarcan A (2004) Melatonin attenuates ifosfamide-induced Fanconi syndrome in rats. J Pineal Res 37 (1): 17–25. https://doi.org/10.1111/j.1600-079X.2004.00131.x
  60. Sezgin D, Aslan G, Sahin K, Tuzcu M, İlhan N, Sahna E (2020) The effects of melatonin against atherosclerosis-induced endothelial dysfunction and inflammation in hypercholesterolemic rats. Arch Physiol Biochem: 1–8. https://doi.org/10.1080/13813455.2020.1838550
  61. Terrón MP, Delgado-Adámez J, Pariente JA, Barriga C, Paredes SD, Rodríguez AB (2013) Melatonin reduces body weight gain and increases nocturnal activity in male Wistar rats. Physiol Behav118: 8–13. https://doi.org/10.1016/j.physbeh.2013.04.006
  62. Труфакин ВА, Шурлыгина АВ, Душкин МИ, Храпова МВ, Мичурина СВ, Мельникова ЕВ, Пантелеева НГ, Тендитник МВ (2014) Влияние мелатонина на клеточный состав селезенки и показатели липидного обмена у крыс с алиментарным ожирением. Бюл экспер биол мед 158 (7): 49–52. [Trufakin VA, Shurlygina AV, Dushkin MI, Khrapova MV, Michurina SV, Mel’nikova EV, Panteleeva NG, Tenditnik MV (2014) Effect of melatonin on cellular composition of the spleen and parameters of lipid metabolism in rats with alimentary obesity. Bull Exp Biol Med 158(7): 49–52. (In Russ)]. https://doi.org/10.1007/s10517-014-2687-6
  63. Tung YT, Chiang PC, Chen YL, Chien YW (2020) Effects of Melatonin on Lipid Metabolism and Circulating Irisin in Sprague-Dawley Rats with Diet-Induced Obesity. Molecules 25 (15): 3329. https://doi.org/10.3390/molecules25153329
  64. Wang L, McFadden JW, Yang G, Zhu H, Lian H, Fu T, Sun Y, Gao T, Li M (2021) Effect of melatonin on visceral fat deposition, lipid metabolism and hepatic lipo-metabolic gene expression in male rats. J Anim Physiol Anim Nutr (Berl) 105 (4): 787–796. https://doi.org/10.1111/jpn.13497
  65. Wongchitrat P, Klosen P, Pannengpetch S, Kitidee K, Govitrapong P, Isarankura-Na-Ayudhya C (2017) High-fat diet-induced plasma protein and liver changes in obese rats can be attenuated by melatonin supplementation. Nutr Res 42: 51–63. https://doi.org/10.1016/j.nutres.2017.04.011
  66. Yildirim A, Arabacı Tamer S, Sahin D, Bagriacik F, Kahraman MM, Onur ND, Cayirli YB, Cilingir Kaya ÖT, Aksu B, Akdeniz E, Yuksel M, Çetinel Ş, Yeğen BÇ (2019) The effects of antibiotics and melatonin on hepato-intestinal inflammation and gut microbial dysbiosis induced by a short-term high-fat diet consumption in rats. Br J Nutr 122 (8): 841–855. https://doi.org/10.1017/S0007114519001466
  67. Zaitone S, Hassan N, El-Orabi N, El-Awady el-S (2011) Pentoxifylline and melatonin in combination with pioglitazone ameliorate experimental non-alcoholic fatty liver disease. Eur J Pharmacol 662 (1-3): 70–77. https://doi.org/10.1016/j.ejphar.2011.04.049
  68. Quirós Cognuck S, Reis WL, Silva M, Debarba LK, Mecawi AS, de Paula FJA, Rodrigues Franci C, Elias LLK, Antunes-Rodrigues J (2020) Sex differences in body composition, metabolism-related hormones, and energy homeostasis during aging in Wistar rats. Physiol Rep 8 (20): e14597. https://doi.org/10.14814/phy2.14597
  69. Boudet J, Roullet JB, Lacour B (1988) Influence of fast, body weight and diet on serum cholesterol, triglycerides, and phospholipids concentrations in the aging rat. Horm Metab Res 20 (12): 734–737. https://doi.org/10.1055/s-2007-1010934
  70. Zhang DM, Jiao RQ, Kong LD (2017) High Dietary Fructose: Direct or Indirect Dangerous Factors Disturbing Tissue and Organ Functions. Nutrients 9 (4): 335. https://doi.org/10.3390/nu9040335
  71. Al Shoyaib A, Archie SR, Karamyan VT (2019) Intraperitoneal Route of Drug Administration: Should it Be Used in Experimental Animal Studies? Pharm Res 37(1): 12. https://doi.org/10.1007/s11095-019-2745-x
  72. Zetner D, Andersen LP, Rosenberg J (2016) Pharmacokinetics of Alternative Administration Routes of Melatonin: A Systematic Review. Drug Res (Stuttg) 66(4): 169–173. https://doi.org/10.1055/s-0035-1565083
  73. Petersen MC, Shulman GI (2018) Mechanisms of Insulin Action and Insulin Resistance. Physiol Rev 98 (4): 2133–2223. https://doi.org/10.1152/physrev.00063.2017
  74. Lebovitz HE (2001) Insulin resistance: definition and consequences. Exp Clin Endocrinol Diabetes 109 Suppl 2: S135–S148. https://doi.org/10.1055/s-2001-18576
  75. Ríos-Lugo MJ, Jiménez-Ortega V, Cano-Barquilla P, Mateos PF, Spinedi EJ, Cardinali DP, Esquifino AI (2015) Melatonin counteracts changes in hypothalamic gene expression of signals regulating feeding behavior in high-fat fed rats. Horm Mol Biol Clin Invest 21(3): 175–183. https://doi.org/10.1515/hmbci-2014-0041
  76. Zibolka J, Mühlbauer E, Peschke E (2015) Melatonin influences somatostatin secretion from human pancreatic δ-cells via MT1 and MT2 receptors. J Pineal Res 58(2): 98–209. https://doi.org/10.1111/jpi.12206
  77. Nassar E, Mulligan C, Taylor L, Kerksick C, Galbreath M, Greenwood M, Kreider R, Willoughby DS (2007) Effects of a single dose of N-Acetyl-5-methoxytryptamine (Melatonin) and resistance exercise on the growth hormone/IGF-1 axis in young males and females. J Int Soc Sports Nutr 4: 14. https://doi.org/10.1186/1550-2783-4-14
  78. Cuesta S, Kireev R, García C, Rancan L, Vara E, Tresguerres JA (2013) Melatonin can improve insulin resistance and aging-induced pancreas alterations in senescence-accelerated prone male mice (SAMP8). Age (Dordr) 35 (3): 659–671. https://doi.org/10.1007/s11357-012-9397-7
  79. Niijima A, Chun SJ, Shima T, Bizot-Espiard JG, Guardiola-Lemaitre B, Nagai K (1998) Effect of intravenous administration of melatonin on the efferent activity of the adrenal nerve. J Auton Nerv Syst 71 (2-3): 134–138. https://doi.org/10.1016/s0165-1838(98)00067-8
  80. Fabiś M, Pruszyńska E, Maćkowiak P (2002) In vivo and in situ action of melatonin on insulin secretion and some metabolic implications in the rat. Pancreas 25 (2): 166–169. https://doi.org/10.1097/00006676-200208000-00009
  81. Faria JA, Kinote A, Ignacio-Souza LM, de Araújo TM, Razolli DS, Doneda DL, Paschoal LB, Lellis-Santos C, Bertolini GL, Velloso LA, Bordin S, Anhê GF (2013) Melatonin acts through MT1/MT2 receptors to activate hypothalamic Akt and suppress hepatic gluconeogenesis in rats. Am J Physiol Endocrinol Metab 305 (2): E230–E242. https://doi.org/10.1152/ajpendo.00094.2013
  82. la Fleur SE, Kalsbeek A, Wortel J, van der Vliet J, Buijs RM (2001) Role for the pineal and melatonin in glucose homeostasis: pinealectomy increases night-time glucose concentrations. J Neuroendocrinol 13 (12): 1025–1032. https://doi.org/10.1046/j.1365-2826.2001.00717.x
  83. Xing L, Wu S, Shi Y, Yue F, Wei L, Russell R, Zhang D (2022) Chronic constant light exposure aggravates high fat diet-induced renal injury in rats. Front Endocrinol (Lausanne) 13: 900392. https://doi.org/10.3389/fendo.2022.900392
  84. Nikolaev G, Robeva R, Konakchieva R (2021) Membrane Melatonin Receptors Activated Cell Signaling in Physiology and Disease. Int J Mol Sci 23 (1): 471. https://doi.org/10.3390/ijms23010471
  85. Mathes AM (2010) Hepatoprotective actions of melatonin: possible mediation by melatonin receptors. World J Gastroenterol 16 (48): 6087–6097. https://doi.org/10.3748/wjg.v16.i48.6087
  86. Bazwinsky-Wutschke I, Bieseke L, Mühlbauer E, Peschke E (2014) Influence of melatonin receptor signalling on parameters involved in blood glucose regulation. J Pineal Res 56 (1): 82–96. https://doi.org/10.1111/jpi.12100
  87. Garaulet M, Qian J, Florez JC, Arendt J, Saxena R, Scheer FAJL (2020) Melatonin Effects on Glucose Metabolism: Time To Unlock the Controversy. Trends Endocrinol Metab 31 (3): 192–204. https://doi.org/10.1016/j.tem.2019.11.011
  88. Jockers R, Maurice P, Boutin JA, Delagrange P (2008) Melatonin receptors, heterodimerization, signal transduction and binding sites: what’s new? Br J Pharmacol 154(6): 1182–1195. https://doi.org/10.1038/bjp.2008.184
  89. Ivanova EA, Bechtold DA, Dupré SM, Brennand J, Barrett P, Luckman SM, Loudon AS (2008) Altered metabolism in the melatonin-related receptor (GPR50) knockout mouse. Am J Physiol Endocrinol Metab 294 (1): E176–E182. https://doi.org/10.1152/ajpendo.00199.2007
  90. Bechtold DA, Sidibe A, Saer BR, Li J, Hand LE, Ivanova EA, Darras VM, Dam J, Jockers R, Luckman SM, Loudon AS (2012) A role for the melatonin-related receptor GPR50 in leptin signaling, adaptive thermogenesis, and torpor. Curr Biol 22 (1): 70–77. https://doi.org/10.1016/j.cub.2011.11.043
  91. Valenzuela-Melgarejo FJ, Caro-Díaz C, Cabello-Guzmán G (2018) Potential Crosstalk between Fructose and Melatonin: A New Role of Melatonin-Inhibiting the Metabolic Effects of Fructose. Int J Endocrinol: 7515767. https://doi.org/10.1155/2018/7515767
  92. de Farias TDSM, Cruz MM, de Sa RCDC, Severi I, Perugini J, Senzacqua M, Cerutti SM, Giordano A, Cinti S, Alonso-Vale MI (2019) Melatonin Supplementation Decreases Hypertrophic Obesity and Inflammation Induced by High-Fat Diet in Mice. Front Endocrinol (Lausanne) 10: 750. https://doi.org/10.3389/fendo.2019.00750
  93. Ma H, Kang J, Fan W, He H, Huang F (2021) ROR: Nuclear Receptor for Melatonin or Not? Molecules 26 (9): 2693. https://doi.org/10.3390/molecules26092693
  94. Ostrowska Z, Kos-Kudla B, Marek B, Kajdaniuk D (2003) Influence of lighting conditions on daily rhythm of bone metabolism in rats and possible involvement of melatonin and other hormonesin this process. Endocr Regul 37(3): 163–174.
  95. Mullur R, Liu YY, Brent GA (2014) Thyroid hormone regulation of metabolism. Physiol Rev 94 (2): 355–382. https://doi.org/10.1152/physrev.00030.2013
  96. Mitsuma T, Nogimori T (1985) Effects of various drugs on thyrotropin secretion in rats. Horm Metab Res 17 (7): 337–341. https://doi.org/10.1055/s-2007-1013537
  97. Baltaci AK, Mogulkoc R, Kul A, Bediz CS, Ugur A (2004) Opposite effects of zinc and melatonin on thyroid hormones in rats. Toxicology 195 (1): 69–75. https://doi.org/10.1016/j.tox.2003.09.001
  98. Ozturk G, Coşkun S, Erbaş D, Hasanoglu E (2000) The effect of melatonin on liver superoxide dismutase activity, serum nitrate and thyroid hormone levels. Jpn J Physiol 50 (1): 149–153. https://doi.org/10.2170/jjphysiol.50
  99. Mirunalini S, Subramanian P (2005) Temporal oscillations of thyroid hormones in long term melatonin treated rats. Pharmazie 60 (1): 52–56.
  100. Виноградова ИА (2009) Влияние препаратов “мелатонин” и “эпиталон” на возрастную динамику тиреотропной активности гипофиза и функции щитовидной железы в разных световых режимах. Успехи геронтол 22 (4): 631–638. [Vinogradova IA (2009) Effect of preparations melatonin and epitalon on the age-related dynamics of thyrotrophic activity of the hypophysis and thyroid gland function in different light regimes. Adv Gerontol 22(4):631–638. (In Russ)].
  101. Macdonald I (1989) Some effects of various dietary carbohydrates on thyroid activity in the rat. Ann Nutr Metab 33 (1): 15–21. https://doi.org/10.1159/000177516
  102. El-Sayed SM, Ibrahim HM (2020) Effect of high-fat diet-induced obesity on thyroid gland structure in female rats and the possible ameliorating effect of metformin therapy. Folia Morphol (Warsz) 79 (3): 476–488. https://doi.org/10.5603/FM.a2019.0100
  103. Shao SS, Zhao YF, Song YF, Xu C, Yang JM, Xuan SM, Yan HL, Yu CX, Zhao M, Xu J, Zhao JJ (2014) Dietary high-fat lard intake induces thyroid dysfunction and abnormal morphology in rats. Acta Pharmacol Sin 35(11): 1411–1420. https://doi.org/10.1038/aps.2014.82
  104. Araujo RL, Andrade BM, Padrón AS, Gaidhu MP, Perry RL, Carvalho DP, Ceddia RB (2010) High-fat diet increases thyrotropin and oxygen consumption without altering circulating 3,5,3'-triiodothyronine (T3) and thyroxine in rats: the role of iodothyronine deiodinases, reverse T3 production, and whole-body fat oxidation. Endocrinology 151 (7): 3460–3469. https://doi.org/10.1210/en.2010-0026
  105. Simões D, Riva P, Peliciari-Garcia RA, Cruzat VF, Graciano MF, Munhoz AC, Taneda M, Cipolla-Neto J, Carpinelli AR (2016) Melatonin modifies basal and stimulated insulin secretion via NADPH oxidase. J Endocrinol 231 (3): 235–244. https://doi.org/10.1530/JOE-16-0259
  106. Hauck AK, Huang Y, Hertzel AV, Bernlohr DA (2019) Adipose oxidative stress and protein carbonylation. J Biol Chem 294 (4): 1083–1088. https://doi.org/10.1074/jbc.R118.003214

Дополнительные файлы


© Н.В. Кузьменко, В.А. Цырлин, М.Г. Плисс, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах