Effects of Semax in the Models of Acute Stress

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Acute stress exposure causes a cascade of neurochemical reactions, leading, in particular, to a change in behavior and increased tolerance to pain in humans and animals. ACTH/MSH-like peptides play an important role in regulating the body’s response to stressful exposures. The aim of the present study was to assess the effects of the ACTH4–10 analogue heptapeptide Semax in various models of acute stress. The effect of intraperitoneal Semax administration at doses of 0.05 and 0.5 mg/kg on changes in behavior and pain sensitivity of Wistar rats in models of inescapable intermittent foot shock stress and forced cold-water swim stress was investigated. To assess the involvement of the endogenous opioid system in the effects of stress, an impact of pretreatment with opioid receptor antagonist naloxone (1 mg/kg) was studied. The stressors used led to an increase in the pain threshold in the paw-pressure test, which indicates the development of stress-induced analgesia (SIA). In addition, rats exposed to stress had an decrease in exploratory behavior and an increase in the anxiety-like behavior in the hole board test. Both Semax and naloxone attenuated SIA in the model of inescapable foot shock stress, but did not affect the value of the pain threshold in the model of forced cold swim stress. Both studied drugs did not affect the behavior of rats in the models of acute stress used. It can be concluded that Semax blocks the opioid form of stress-induced analgesia, but does not affect the behavioral alterations in rats exposed to acute stress.

作者简介

N. Glazova

Lomonosov Moscow State University, Biology faculty; Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”

Email: nglevitskaya@gmail.com
Russia, Moscow; Russia, Moscow

N. Myasoedov

Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”

Email: nglevitskaya@gmail.com
Russia, Moscow

S. Limborska

Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”

Email: nglevitskaya@gmail.com
Russia, Moscow

L. Dergunova

Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”

Email: nglevitskaya@gmail.com
Russia, Moscow

A. Kamensky

Lomonosov Moscow State University, Biology faculty; Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”

Email: nglevitskaya@gmail.com
Russia, Moscow; Russia, Moscow

L. Andreeva

Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”

Email: nglevitskaya@gmail.com
Russia, Moscow

E. Sebentsova

Lomonosov Moscow State University, Biology faculty; Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”

Email: nglevitskaya@gmail.com
Russia, Moscow; Russia, Moscow

D. Vilensky

Lomonosov Moscow State University, Biology faculty; Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics

Email: nglevitskaya@gmail.com
Russia, Moscow; Russia, Moscow

D. Manchenko

Lomonosov Moscow State University, Biology faculty

Email: nglevitskaya@gmail.com
Russia, Moscow

N. Levitskaya

Lomonosov Moscow State University, Biology faculty; Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”

编辑信件的主要联系方式.
Email: nglevitskaya@gmail.com
Russia, Moscow; Russia, Moscow

参考

  1. Wilder RL (1995) Neuroendocrine–immune system interactions and autoimmunity. Annu Rev Immunol 13: 307–338. https://doi.org/10.1146/annurev.iy.13.040195.001515
  2. Finn DP (2010) Endocannabinoid-mediated modulation of stress responses: physiological and pathophysiological significance. Immunobiology 215(8): 629–646. https://doi.org/10.1016/j.imbio.2009.05.011
  3. Ghasemzadeh Z, Rezayof A (2015) Ventral hippocampal nicotinic acetylcholine receptors mediate stress-induced analgesia in mice. Prog Neuropsychopharmacol Biol Psychiatry 56: 235–242. https://doi.org/10.1016/j.pnpbp.2014.09.008
  4. Cecconello AL, Torres IL, Oliveira C, Zanini P, Niches G, Ribeiro MF (2016) DHEA administration modulates stress-induced analgesia in rats. Physiol Behav 157: 231–236. https://doi.org/10.1016/j.physbeh.2016.02.004
  5. Tillage RP, Foster SL, Lustberg D, Liles LC, McCann KE, Weinshenker D (2021) Co-released norepinephrine and galanin act on different timescales to promote stress-induced anxiety-like behavior. Neuropsychopharmacology 46(8): 1535–1543. https://doi.org/10.1038/s41386-021-01011-8
  6. Floriou-Servou A, von Ziegler L, Waag R, Schläppi C, Germain PL, Bohacek J (2021) The Acute Stress Response in the Multiomic Era. Biol Psychiatry 89(12): 1116–1126. https://doi.org/10.1016/j.biopsych.2020.12.031
  7. Гуляева НВ (2022) Нейроэндокринный контроль гиперглутаматергических состояний при патологиях мозга: влияние глюкокортикоидов. Рос физиол журн им ИМ Сеченова 108 (9): 1077–1093. [Gulyaeva NV (2022) Neuroendocrine control of hyperglutamatergic states in brain pathologies: the effects of glucocorticoids. Russ J Physiol 108(9): 1077–1093. (In Russ)]. https://doi.org/10.31857/S0869813922090102
  8. O’Connor TM, O’Halloran DJ, Shanahan F (2000) The stress response and the hypothalamic-pituitary-adrenal axis: from molecule to melancholia. QJM 93(6): 323–333. https://doi.org/10.1093/qjmed/93.6.323
  9. Busnardo C, Crestani CC, Scopinho AA, Packard BA, Resstel LBM, Correa FMA, Herman JP (2019) Nitrergic neurotransmission in the paraventricular nucleus of the hypothalamus modulates autonomic, neuroendocrine and behavioral responses to acute restraint stress in rats. Prog Neuropsychopharmacol Biol Psychiatry 90: 16–27. https://doi.org/10.1016/j.pnpbp.2018.11.001
  10. Tang W, Zhou D, Wang S, Hao S, Wang X, Helmy M, Zhu J, Wang H (2021) CRH Neurons in the Laterodorsal Tegmentum Mediate Acute Stress-induced Anxiety. Neurosci Bull 37(7): 999–1004. https://doi.org/10.1007/s12264-021-00684-x
  11. Millan MJ, Brocco M (2003) The Vogel conflict test: procedural aspects, gamma-aminobutyric acid, glutamate and monoamines. Eur J Pharmacol 463(1–3): 67–96. https://doi.org/10.1016/s0014-2999(03)01275-5
  12. McCall JG, Al-Hasani R, Siuda ER, Hong DY, Norris AJ, Ford CP, Bruchas MR (2015) CRH Engagement of the Locus Coeruleus Noradrenergic System Mediates Stress-Induced Anxiety. Neuron 87(3): 605–620. https://doi.org/10.1016/j.neuron.2015.07.002
  13. al’Absi M, Nakajima M, Bruehl S (2021) Stress and pain: modality-specific opioid mediation of stress-induced analgesia. J Neural Transm (Vienna) 128(9): 1397–1407. https://doi.org/10.1007/s00702-021-02401-4
  14. Gantz I, Fong TM (2003) The melanocortin system. Am J Physiol Endocrinol Metab 284(3): E468–E474. https://doi.org/10.1152/ajpendo.00434.2002
  15. Yang Y, Harmon CM (2020) Molecular determinants of ACTH receptor for ligand selectivity. Mol Cell Endocrinol 503: 110688. https://doi.org/10.1016/j.mce.2019.110688
  16. Sharfman N, Gilpin NW (2021) The Role of Melanocortin Plasticity in Pain-Related Outcomes After Alcohol Exposure. Front Psychiatry 12: 764720. https://doi.org/10.3389/fpsyt.2021.764720
  17. Fridmanis D, Roga A, Klovins J (2017) ACTH Receptor (MC2R) Specificity: What Do We Know About Underlying Molecular Mechanisms? Front Endocrinol (Lausanne) 8: 13. https://doi.org/10.3389/fendo.2017.00013
  18. Gallo-Payet N, Martinez A, Lacroix A (2017) Editorial: ACTH Action in the Adrenal Cortex: From Molecular Biology to Pathophysiology. Front Endocrinol (Lausanne) 8: 101. https://doi.org/10.3389/fendo.2017.00101
  19. Yamano Y, Yoshioka M, Toda Y, Oshida Y, Chaki S, Hamamoto K, Morishima I (2004) Regulation of CRF, POMC and MC4R gene expression after electrical foot shock stress in the rat amygdala and hypothalamus. J Vet Med Sci 66(11): 1323–1327. https://doi.org/10.1292/jvms.66.1323
  20. Chaki S, Okuyama S (2005) Involvement of melanocortin-4 receptor in anxiety and depression. Peptides 26(10): 1952–1964. https://doi.org/10.1016/j.peptides.2004.11.029
  21. Chaki S, Ogawa S, Toda Y, Funakoshi T, Okuyama S (2003) Involvement of the melanocortin MC4 receptor in stress-related behavior in rodents. Eur J Pharmacol 474(1): 95–101. https://doi.org/10.1016/s0014-2999(03)02033-8
  22. Shimazaki T, Chaki S (2005) Anxiolytic-like effect of a selective and non-peptidergic melanocortin 4 receptor antagonist, MCL0129, in a social interaction test. Pharmacol Biochem Behav 80(3): 395–400. https://doi.org/10.1016/j.pbb.2004.11.014
  23. Ashmarin IP, Nezavibatko VN, Levitskaya NG, Koshelev VB, Kamensky AA (1995) Design and investigation of an ACTH(4-10) analogue lacking D-amino acids and hidrophobic radicals. Neurosci Res Commun 16(2): 105–112.
  24. Ашмарин ИП, Незавибатько ВН, Мясоедов НФ, Каменский АА, Гривенников ИА, Пономарева-Степная МА, Андреева ЛА, Каплан АЯ, Кошелев ВБ, Рясина ТВ (1997) Ноотропный аналог адренокортикотропина 4–10 – семакс (15-летний опыт разработки и изучения). Журн высш нерв деятельн им ИП Павлова 47: 420–430. [Asmarin IP, Nezavibat’ko VN, Miasoedov NF, Kamenski˘ı AA, Grivennikov IA, Ponomareva-Stepnaia MA, Andreeva LA, Kaplan AI, Koshelev VB, Riasina TV (1997) A nootropic adrenocorticotropin analog 4–10 – semax (l5 years experience in its design and study). Zhurn Vyss Nervn Deiatelnosti im IP Pavlova 47: 420–430. (In Russ)].
  25. Виленский ДА, Левицкая НГ, Андреева ЛА, Алфеева ЛЮ, Каменский АА, Мясоедов НФ (2007) Влияние хронического введения семакса на исследовательскую активность и эмоциональное состояние белых крыс. Рос физиол журн им ИМ Сеченова 93(6): 661–669. [Vilenski DA, Levitskaia NG, Andreeva LA, Alfeeva LIu, Kamenski AA, Miasoedov NF (2007) Effects of chronic Semax administration on exploratory activity and emotional reaction in white rats. Russ J Physiol 93(6): 661–669. (In Russ)].
  26. Yatsenko KA, Glazova NYu, Inozemtseva LS, Andreeva LA, Kamensky AA, Grivennikov IA, Levitskaya NG, Dolotov OV, Myasoedov NF (2013) Heptapeptide Semax Attenuates the Effects of Chronic Unpredictable Stress in Rats. Dokl Biol Sci 453: 353–357. https://doi.org/10.1134/S0012496613060161
  27. Levitskaya NG, Vilenskii DA, Sebentsova EA, Andreeva LA, Kamensky AA, Myasoedov NF (2010) Influence of semax on the emotional state of white rats in the norm and against the background of cholecystokinin-tetrapeptide action. Biol Bull 37(2): 186–192. https://doi.org/10.1134/S1062359010020147
  28. Glazova NYu, Sebentsova EA, Manchenko DM, Andreeva LA, Dergunova LV, Levitskaya NG, Limborska SA, Myasoedov NF (2018) The Protective Effect of Semax in a Model of Stress-induced Impairment of Memory and Behavior in White Rats. Biol Bull 45(4): 394–399. https://doi.org/10.1134/S1062359018040040
  29. Ivanova DM, Vilenski DA, Levitskaya NG, Andreeva LA, Alfeeva LY, Kamenski AA, Miasoedov NF (2006) Effect of Semax on changes in pain sensitivity and behavior of animals induced by forced swimming. Dokl Biol Sci 407: 123–127. https://doi.org/10.1134/s001249660602003710.1134/s0012496606020037
  30. Atwal N, Winters BL, Vaughan CW (2020) Endogenous cannabinoid modulation of restraint stress-induced analgesia in thermal nociception. J Neurochem 152(1): 92–102. https://doi.org/10.1111/jnc.14884
  31. Lewis JW, Cannon JT, Liebeskind JC (1980) Opioid and nonopioid mechanisms of stress analgesia. Science 208(4444): 623–625. https://doi.org/10.1126/science.7367889
  32. Mogil JS, Sternberg WF, Balian H, Liebeskind JC, Sadowski B (1996) Opioid and nonopioid swim stress-induced analgesia: a parametric analysis in mice. Physiol Behav 59(1): 123–132. https://doi.org/10.1016/0031-9384(95)02073-x
  33. Hohmann AG, Suplita RL, Bolton NM, Neely MH, Fegley D, Mangieri R, Krey JF, Walker JM, Holmes PV, Crystal JD, Duranti A, Tontini A, Mor M, Tarzia G, Piomelli D (2005) An endocannabinoid mechanism for stress-induced analgesia. Nature 435(7045): 1108–1112. https://doi.org/10.1038/nature03658
  34. Lafrance M, Roussy G, Belleville K, Maeno H, Beaudet N, Wada K, Sarret P (2010) Involvement of NTS2 receptors in stress-induced analgesia. Neuroscience 166(2): 639–652. https://doi.org/10.1016/j.neuroscience.2009.12.042
  35. Terman GW, Shavit Y, Lewis JW, Cannon JT, Liebeskind JC (1984) Intrinsic mechanisms of pain inhibition: activation by stress. Science 226(4680): 1270–1277. https://doi.org/10.1126/science.6505691
  36. Terman GW, Morgan MJ, Liebeskind JC (1986) Opioid and non-opioid stress analgesia from cold water swim: importance of stress severity. Brain Res 372(1): 167–171. https://doi.org/10.1016/0006-8993(86)91472-1
  37. Sadowski B, Konarzewski M (1999) Analgesia in selectively bred mice exposed to cold in helium/oxygen atmosphere. Physiol Behav 66(1): 145–151. https://doi.org/10.1016/s0031-9384(98)00282-0
  38. Łapo IB, Konarzewski M, Sadowski B (2003) Analgesia induced by swim stress: interaction between analgesic and thermoregulatory mechanisms. Pflugers Arch 446(4): 463–469. https://doi.org/10.1007/s00424-003-1060-9
  39. Takeda H, Tsuji M, Matsumiya T (1998) Changes in head-dipping behavior in the hole-board test reflect the anxiogenic and/or anxiolytic state in mice. Eur J Pharmacol 350(1): 21–29. https://doi.org/10.1016/s0014-2999(98)00223-4
  40. Abbasi-Habashi S, Ghasemzadeh Z, Rezayof A (2020) Morphine improved stress-induced amnesia and anxiety through interacting with the ventral hippocampal endocannabinoid system in rats. Brain Res Bull 164: 407–414. https://doi.org/10.1016/j.brainresbull.2020.09.002
  41. Farzamfard P, Rezayof A, Alijanpour S (2022) Ventral hippocampal NMDA receptors mediate the effects of nicotine on stress-induced anxiety/exploratory behaviors in rats. Neurosci Lett 780: 136649. https://doi.org/10.1016/j.neulet.2022.136649
  42. Bershad AK, Miller MA, Norman GJ, de Wit H (2018) Effects of opioid- and non-opioid analgesics on responses to psychosocial stress in humans. Horm Behav 102: 41–47. https://doi.org/10.1016/j.yhbeh.2018.04.009
  43. Smock T, Fields HL (1981) ACTH1-24 blocks opiate-induced analgesia in the rat. Brain Res 212(1): 202–206. https://doi.org/10.1016/0006-8993(81)90052-4
  44. Contreras PC, Takemori AE (1984) Antagonism of morphine-induced analgesia, tolerance and dependence by alpha-melanocyte-stimulating hormone. J Pharmacol Exp Ther 229(1): 21–26.
  45. Ercil NE, Galici R, Kesterson RA (2005) HS014, a selective melanocortin-4 (MC4) receptor antagonist, modulates the behavioral effects of morphine in mice. Psychopharmacology (Berl) 180(2): 279–285. https://doi.org/10.1007/s00213-005-2166-x
  46. Han DJ, He ZG, Yang H (2018) Melanocortin-4 receptor in subthalamic nucleus is involved in the modulation of nociception. Am J Clin Exp Immunol 7(4): 76–80.
  47. Kovalitskaya YA, Zolotarev YA, Kolobov AA, Sadovnikov VB, Yurovsky VV, Navolotskaya EV (2007) Interaction of ACTH synthetic fragments with rat adrenal cortex membranes. J Pept Sci 13(8): 513–518. https://doi.org/10.1002/psc.873
  48. Манченко ДМ, Глазова НЮ, Себенцова ЕА, Андреева ЛА, Долотов ОВ, Каменский АА, Мясоедов НФ, Левицкая НГ (2022) Влияние фрагмента АКТГ15-18 и его аналога АКТГ15-18-Pro-Gly-Pro на последствия острого стрессогенного воздействия. Журн высш нерв деятельн им ИП Павлова 72(4): 561–575. [Manchenko DM, Glazova NYu, Sebentsova EA, Andreeva LA, Dolotov OV, Kamensky AA, Myasoedov NF, Levitskaya NG (2022) Effects of fragment ACTH15-18 and its analog ACTH15-18-PGP on the consequences of the acute stress exposure. Zh Vyss Nervn Deiatelnosti im IP Pavlova 72: 561–575. (In Russ)]. https://doi.org/10.31857/S0044467722040074
  49. Musazzi L, Tornese P, Sala N, Popoli M (2018) What Acute Stress Protocols Can Tell Us About PTSD and Stress-Related Neuropsychiatric Disorders. Front Pharmacol 9: 758. https://doi.org/10.3389/fphar.2018.00758
  50. Chakraborty P, Chattarji S (2019) Interventions after acute stress prevent its delayed effects on the amygdala. Neurobiol Stress 10: 100168. https://doi.org/10.1016/j.ynstr.2019.100168
  51. Filippenkov IB, Stavchansky VV, Glazova NY, Sebentsova EA, Remizova JA, Valieva LV, Levitskaya NG, Myasoedov NF, Limborska SA, Dergunova LV (2021) Antistress action of melanocortin derivatives associated with correction of gene expression patterns in the hippocampus of male rats following acute stress. Int J Mol Sci 22(18): 10054. https://doi.org/10.3390/ijms221810054

补充文件

附件文件
动作
1. JATS XML
2.

下载 (88KB)
3.

下载 (34KB)
4.

下载 (87KB)
5.

下载 (37KB)
6.

下载 (81KB)
7.

下载 (32KB)

版权所有 © Н.Ю. Глазова, Д.М. Манченко, Д.А. Виленский, Е.А. Себенцова, Л.А. Андреева, А.А. Каменский, Л.В. Дергунова, С.А. Лимборская, Н.Ф. Мясоедов, Н.Г. Левицкая, 2023

##common.cookie##