Structural Optimization of an α-Hairpinin Blocking Potassium Channels KV1.3

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Obtaining compounds with specificity for certain isoforms of ion channels is a significant problem of curent physiology and pharmacology. In a series of papers, we have shown that the α-hairpinin fold can serve as a template for the rational design of peptide ligands of potassium channels. Here, we used molecular modeling to optimize the structure of the previously obtained Tk-hefu-10 peptide, a selective KV1.3 channel blocker, with a half-maximal inhibitory concentration (IC50) of ≈150 nM. Molecular dynamics simulation of the Tk-hefu-10–KV1.3 complex provided information on the interaction of individual amino acid residues of the peptide and channel, and the analysis of these interactions made it possible to propose amino acid substitutions in the structure of Tk-hefu-10 to increase its affinity. Novel Tk-hefu-12 peptide is a truncated analog of Tk-hefu-10 by one residue with five substitutions; it is characterized by an IC50 value of ≈70 nM against KV1.3. In addition, there are no methionine residues in the structure of Tk-hefu-12, which makes it possible to obtain Tk-hefu peptides using cyanogen bromide.

Авторлар туралы

A. Gigolaev

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: avas@ibch.ru
Russia, Moscow

V. Tabakmakher

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: avas@ibch.ru
Russia, Moscow

S. Peigneur

KU Leuven

Email: avas@ibch.ru
Belgium, Leuven

J. Tytgat

KU Leuven

Email: avas@ibch.ru
Belgium, Leuven

A. Vassilevski

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; Moscow Institute of Physics and Technology (State University)

Хат алмасуға жауапты Автор.
Email: avas@ibch.ru
Russia, Moscow; Russia, Moscow Region, Dolgoprudny

Әдебиет тізімі

  1. Hille B (2001) Ion Channels of Excitable Membranes, 3rd ed. Sinauer Associates, Inc., Sunderland. Mass.
  2. Feske S, Wulff H, Skolnik EY (2015) Ion channels in innate and adaptive immunity. Annu Rev Immunol 33: 291–353. https://doi.org/10.1146/ANNUREV-IMMUNOL-032414-112212
  3. Wulff H, Calabresi PA, Allie R, Yun S, Pennington M, Beeton C, Chandy KG (2003) The voltage-gated Kv1.3 K(+) channel in effector memory T cells as new target for MS. J Clin Invest 111: 1703–1713. https://doi.org/10.1172/JCI16921
  4. Chandy KG, Wulff H, Beeton C, Pennington M, Gutman GA, Cahalan MD (2004) K+ channels as targets for specific immunomodulation. Trends Pharmacol Sci 25: 280–289. https://doi.org/10.1016/j.tips.2004.03.010
  5. Beeton C, Wulff H, Standifer NE, Azam P, Mullen KM, Pennington MW, Kolski-Andreaco A, Wei E, Grino A, Counts DR, Wang PH, LeeHealey CJ, S Andrews B, Sankaranarayanan A, Homerick D, Roeck WW, Tehranzadeh J, Stanhope KL, Zimin P, Havel PJ, Griffey S, Knaus H-G, Nepom GT, Gutman GA, Calabresi PA, Chandy KG (2006) KV1.3 channels are a therapeutic target for T cell-mediated autoimmune diseases. Proc Natl Acad Sci USA 103: 17 414–17 419. https://doi.org/10.1073/pnas.0605136103
  6. Valverde P, Kawai T, Taubman MA (2004) Selective blockade of voltage-gated potassium channels reduces inflammatory bone resorption in experimental periodontal disease. J Bone Miner Res 19: 155–164. https://doi.org/10.1359/JBMR.0301213
  7. Berkut AA, Usmanova DR, Peigneur S, Oparin PB, Mineev KS, Odintsova TI, Tytgat J, Arseniev AS, Grishin E V., Vassilevski AA (2014) Structural similarity between defense peptide from wheat and scorpion neurotoxin permits rational functional design. J Biol Chem 289: 14331–14340. https://doi.org/10.1074/jbc.M113.530477
  8. Berkut AA, Chugunov AO, Mineev KS, Peigneur S, Tabakmakher VM, Krylov NA, Oparin PB, Lihonosova AF, Novikova EV, Arseniev AS, Grishin EV, Tytgat J, Efremov RG, Vassilevski AA (2019) Protein surface topography as a tool to enhance the selective activity of a potassium channel blocker. J Biol Chem 294(48): 18349–18359. https://doi.org/10.1074/jbc.RA119.010494
  9. Tabakmakher VM, Gigolaev AM, Peigneur S, Krylov NA, Tytgat J, Chugunov AO, Vassilevski AA, Efremov RG (2021) Potassium channel blocker crafted by α-hairpinin scaffold engineering. Biophys J 120: 2471–2481. https://doi.org/10.1016/j.bpj.2021.04.020
  10. Gigolaev AM, Lushpa VA, Pinheiro-Junior EL, Tabakmakher VM, Peigneur S, Ignatova AA, Feofanov AV., Efremov RG, Mineev KS, Tytgat J, Vassilevski AA (2022) Artificial pore blocker acts specifically on voltage-gated potassium channel isoform KV1.6. J Biol Chem: 102467. https://doi.org/10.1016/J.JBC.2022.102467
  11. Lyukmanova EN, Shenkarev ZO, Shulepko MA, Paramonov AS, Chugunov AO, Janickova H, Dolejsi E, Dolezal V, Utkin YN, Tsetlin VI, Arseniev AS, Efremov RG, Dolgikh DA, Kirpichnikov MP (2015) Structural insight into specificity of interactions between nonconventional three-finger weak toxin from Naja kaouthia (WTX) and muscarinic acetylcholine receptors. J Biol Chem 290(39): 23616–23630. https://doi.org/10.1074/jbc.M115.656595
  12. Chugunov AO, Volynsky PE, Krylov NA, Nolde DE, Efremov RG (2016) Temperature-sensitive gating of TRPV1 channel as probed by atomistic simulations of its trans- and juxtamembrane domains. Sci Rep 6: 33112. https://doi.org/10.1038/srep33112
  13. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79: 926–935. https://doi.org/10.1063/1.445869
  14. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindah E (2015) Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1: 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  15. Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO, Shaw DE (2010) Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins Struct Funct Bioinform 78(8): 1950–1958. https://doi.org/10.1002/prot.22711
  16. Berendsen HJC, Postma JPM, Van Gunsteren WF, Dinola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81: 3684–3690. https://doi.org/10.1063/1.448118
  17. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126(1): 014101. https://doi.org/10.1063/1.2408420
  18. Pyrkov T V., Efremov RG (2007) A fragment-based scoring function to re-rank ATP docking results. Int J Mol Sci 8: 1083–1094. https://doi.org/10.3390/i8111083
  19. Pyrkov T V., Chugunov AO, Krylov NA, Nolde DE, Efremov RG (2009) PLATINUM: A web tool for analysis of hydrophobic/hydrophilic organization of biomolecular complexes. Bioinformatics 25: 1201–1202. https://doi.org/10.1093/bioinformatics/btp111
  20. McCoy J, LaVallie E (2001) Expression and Purification of Thioredoxin Fusion Proteins. In: Current Protocols in Molecular Biology. John Wiley & Sons, Inc., Hoboken. NJ. USA. 16.8.1–16.8.14.
  21. Gasparian ME, Ostapchenko VG, Schulga AA, Dolgikh DA, Kirpichnikov MP (2003) Expression, purification, and characterization of human enteropeptidase catalytic subunit in Escherichia coli. Protein Exp Purif 31(1): 133–139. https://doi.org/10.1016/S1046-5928(03)00159-1
  22. Lobstein J, Emrich CA, Jeans C, Faulkner M, Riggs P, Berkmen M (2012) SHuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm. Microb Cell Fact 11: 56. https://doi.org/10.1186/1475-2859-11-56
  23. Kuzmenkov AI, Sachkova MY, Kovalchuk SI, Grishin EV, Vassilevski AA (2016) Lachesana tarabaevi, an expert in membrane-Active toxins. Biochem J 473: 2495–2506. https://doi.org/10.1042/BCJ20160436
  24. Peigneur S, Billen B, Derua R, Waelkens E, Debaveye S, Béress L, Tytgat J (2011) A bifunctional sea anemone peptide with Kunitz type protease and potassium channel inhibiting properties. Biochem Pharmacol 82(1): 81–90. https://doi.org/10.1016/j.bcp.2011.03.023
  25. Banerjee A, Lee A, Campbell E, MacKinnon R (2013) Structure of a pore-blocking toxin in complex with a eukaryotic voltage-dependent K+ channel. Elife 21(2): e00594. https://doi.org/10.7554/eLife.00594
  26. Tabakmakher VM, Krylov NA, Kuzmenkov AI, Efremov RG, Vassilevski AA (2019) Kalium 2.0, a comprehensive database of polypeptide ligands of potassium channels. Sci Data 61(6): 1–8. https://doi.org/10.1038/s41597-019-0074-x

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (1MB)
3.

Жүктеу (77KB)
4.

Жүктеу (60KB)

© А.М. Гиголаев, В.М. Табакмахер, С. Пеньёр, Я. Титгат, А.А. Василевский, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>