Dynamics of the Expression of Bone Homeostasis Genes in the Developmet of Aseptic Necrosis of the Femoral Head in the Experiment

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The pathogenesis of a number of diseases is characterized by a violation of the regulation of bone homeostasis, with the progressive development of osteodestruction. At the same time, an active study of the mechanisms leading to a shift in the balance of osteoreparative and osteoresorption directions of osteogenesis is underway. The determination of molecular and cellular patterns affecting the dynamics of changes in bone metabolism is a significant task among a wide range of specialists. Such research works allow us to propose algorithms for targeted therapeutic effects on various key links in the pathogenesis of osteodestruction. The study analyzed the expression of genes involved in maintaining bone homeostasis, changes in the histological picture under experimental conditions, depending on the time elapsed since the induction of aseptic necrosis. The result of the work showed the heterogeneity of the development of osteodestruction in an experiment on Wistar rats, with a surgically created focus of hypoperfusion of the femoral head against the background of increased intra-articular pressure. In the first two weeks of the development of aseptic necrosis, the expression of the hif1a gene was most actively determined, which can be considered from the position of a trigger for further disruption of bone metabolism. At the same time, the concentration of m-RNA of osteogenesis and osteoresorption genes was reduced. The most active osteolytic processes according to electron microscopy data, increases in the expression of osteoclastogenesis induction genes were observed at 6 weeks of the experiment. The osteoreporative orientation of bone metabolism gradually increased from the beginning of the study and 2 months after the manifestation of avascular necrosis of the femoral head, active osteoblasts, increased expression of bone matrix genes, osteoblastogenesis were determined. Thus, the development of osteodestruction is an extremely heterogeneous process, with dynamically changing molecular patterns depending on time, determining the activity of signaling pathways of bone metabolism.

作者简介

N. Shabaldin

Kemerovo State Medical University of the Ministry of Health of the Russian Federation

编辑信件的主要联系方式.
Email: shabaldin.nk@yandex.ru
Russia, Kemerovo

A. Sinitskaya

Institute for Complex Issues of Cardiovascular Diseases

Email: shabaldin.nk@yandex.ru
Russia, Kemerovo

A. Shabaldin

Kemerovo State Medical University of the Ministry of Health of the Russian Federation; Institute for Complex Issues of Cardiovascular Diseases

Email: shabaldin.nk@yandex.ru
Russia, Kemerovo; Russia, Kemerovo

R. Mukhamadiyarov

Institute for Complex Issues of Cardiovascular Diseases

Email: shabaldin.nk@yandex.ru
Russia, Kemerovo

参考

  1. Коршунова ЕЮ, Белохвостикова ТС, Дмитриева ЛА (2011) Иммунологический контроль гомеостаза костной ткани. Политравма 1: 82–85. [Korshunova IM, Belokhvostikova TS, Dmitrieva LA (2011) Immunological control of bone tissue homeostasis. Polytrauma 1: 82–85. (In Russ)].
  2. Carrillo-López N, Martínez-Arias L, Fernández-Villabrille S, Dusso A, Cannata-Andía JB, Naves-Díaz M, Panizo S (2021) Role of the RANK/RANKL/OPG and Wnt/β-Catenin Systems in CKD Bone and Cardiovascular Disorders. Calcif Tissue Int 108: 439–451. https://doi.org/10.1007/s00223-020-00803-2
  3. Castro LF, Burke AB, Wang HD, Tsai J, Florenzano P, Pan KS, Bhattacharyya N, Boyce AM, Gafni RI, Molinolo AA, Robey PG, Collins MT (2019) Activation of RANK/RANKL/OPG pathway is involved in the pathophysiology of fibrous dysplasia and associated with disease burden. J Bone and Mineral Res 34(2): 290–294. https://doi.org/10.1002/jbmr.3602
  4. Chen XJ, Shen YS, He MC, Yang F, Yang P, Pang FX, He W, Cao Y, Wei QS (2019) Polydatin promotes the osteogenic differentiation of human bone mesenchymal stem cells by activating the BMP2-Wnt/β-catenin signaling pathway. Biomed & Pharmacother 112. https://doi.org/10.1016/j.biopha.2019.108746
  5. Chong DY, Schrader T, Laine JC, Yang S, Gilbert SR, Kim HKW (2021) Reliability and Validity of Visual Estimation of Femoral Head Hypoperfusion on Perfusion MRI in Legg-Calve-Perthes Disease. J Pediatr Orthopaed 41(9): 780–786. https://doi.org/10.1097/BPO.0000000000001945
  6. Чумакова СП, Уразова ОИ, Винс МВ, Шипулин ВМ, Пряхин АС, Букреева ЕБ, Буланова АА, Кошель АП, Новицкий ВВ (2020) Содержание гипоксия-индуцируемых факторов и медиаторов иммуносупрессии в крови при заболеваниях, ассоциированных с гипоксией. Бюл сибирск мед 19(3): 105–112. [Chumakova SP, Urazova OI, Vince MV, Shipulin VM, Pryakhin AS, Bukreeva EB, Bulanova AA, Purse AP, Novitsky BB (2020) The content of hypoxia-induced factors and mediators of immunosuppression in the blood in diseases associated with hypoxia. Bull Siber Med 19(3): 105–112. (In Russ)].https://doi.org/10.20538/1682-0363-2020-3-105-112
  7. Nikolic N, Jakovljevic A, Carkic J, Beljic-Ivanovic K, Miletic M, Soldatovic I, Andric M, Ivanovic V, Milasin J (2019) Notch Signaling Pathway in Apical Periodontitis: Correlation with Bone Resorption Regulators and Proinflammatory Cytokines. J Endodont 45(2): 123–128. https://doi.org/10.1016/j.joen.2018.10.015
  8. Udagawa N, Koide M, Nakamura M, Nakamichi Y, Yamashita T, Uehara S, Kobayashi Y, Furuya Y, Yasuda H, Fukuda C, Tsuda E (2021) Osteoclast differentiation by RANKL and OPG signaling pathways. J Bone and Mineral Metabol 39: 19–26. https://doi.org/10.1007/s00774-020-01162-6
  9. Шабалдин НА, Шабалдин АВ, Попова НЕ, Постникова АВ, Богданов ЛА, Богданов АВ (2022) Экспериментальная модель асептического некроза головки бедренной кости при изучении болезни Легга–Кальве–Пертеса. Фундамент и клин мед 7(3): 23–30. [Shabaldin NA, Shabaldin AV, Popova NE, Postnikova AV, Bogdanov LA, Bogdanov AV (2022) Experimental model of aseptic necrosis of the femoral head in the study of Legg-Calve-Perthes disease. Fundament and Clin Med 7(3): 23–30. (In Russ)]. https://doi.org/10.23946/2500-0764-2022-7-3-23-30
  10. Yellowley CE, Genetos DC (2019) Hypoxia Signaling in the Skeleton: Implications for Bone Health. Current Osteopor Rep 17: 26–35. https://doi.org/10.1007/s11914-019-00500-6
  11. Kuroyanagia G, Adapala NS, Yamaguchi R, Kamiya N, Deng Z, Aruwajoye O, Kutschke M, Chen E, Jo C, Ren Y, Kim HKW (2018) Interleukin-6 deletion stimulates revascularization and new bone formation following ischemic osteonecrosis in a murine model. Bone 116: 221–231. https://doi.org/10.1016/j.bone.2018.08.011
  12. Adapala NS, Kim HKW (2016) Comprehensive Genome-Wide Transcriptomic Analysis of Immature Articular Cartilage following Ischemic Osteonecrosis of the Femoral Head in Piglets. PLoS One 11(4): e0153174. https://doi.org/10.1371/journal.pone.0153174
  13. Johnson CP, Wang L, Tóth F, Aruwajoye O, Carlson CS, Kim HKW, Ellermann JM (2018) Quantitative MRI Helps to Detect Hip Ischemia: Preclinical Model of Legg–Calvé–Perthes Disease. Radiology 289(2): 386–395. https://doi.org/10.1148/radiol.2018180497
  14. Lee KS, Kim HJ, Li QL, Chi XZ, Ueta C, Komori T, Wozney JM, Kim EG, Choi JY, Ryoo HM, Bae SC (2000) Runx2 is a common target of transforming growth factor b1 and bone morphogenetic protein 2, and cooperation between runx2 and smad5 induces osteoblast-specific gene expression in the pluripotent mesenchymal precursor cell line C2C12. Mol Cell Biol 23(20): 8783–8792. https://doi.org/10.1128/MCB.20.23.8783-8792.2000
  15. Dong M, Yu X, Chen W, Guo Z, Sui L, Xu Y, Shang Y, Niu W, Kong Y. (2018) Osteopontin Promotes Bone Destruction in Periapical Periodontitis by Activating the NF-κB Pathway. Cell Physiol Biochem 49(3): 884–898. https://doi.org/10.1159/000493219

补充文件

附件文件
动作
1. JATS XML
2.

下载 (824KB)
3.

下载 (796KB)
4.

下载 (1MB)
5.

下载 (959KB)
6.

下载 (74KB)

版权所有 © Н.А. Шабалдин, А.В. Синицкая, А.В. Шабалдин, Р.А. Мухамадияров, 2023

##common.cookie##