Analysis of Component Composition of Highly Scattering Media Using a Fluorescence˗Scatterometry Method
- Authors: Ignatenko D.N.1, Shkirin A.V.1, Astashev M.E.1, Gudkov S.V1
-
Affiliations:
- Prokhorov General Physics Institute of the Russian Academy of Sciences
- Issue: No 6 (2025)
- Pages: 85-99
- Section: Biological Sciences
- URL: https://journals.rcsi.science/0869-7698/article/view/365626
- DOI: https://doi.org/10.7868/S3034530825060089
- ID: 365626
Cite item
Full Text
Abstract
About the authors
D. N. Ignatenko
Prokhorov General Physics Institute of the Russian Academy of Sciences
Email: DmitriyEK13104@yandex.ru
ORCID iD: 0000-0003-0111-2875
Candidate of Sciences in Physics and Mathematics Moscow, Russia
A. V. Shkirin
Prokhorov General Physics Institute of the Russian Academy of Sciences
Email: AVShkirin@mephi.ru
ORCID iD: 0000-0002-0077-0481
Candidate of Sciences in Physics and Mathematics Moscow, Russia
M. E. Astashev
Prokhorov General Physics Institute of the Russian Academy of Sciences
Email: astashev@yandex.ru
ORCID iD: 0000-0002-6591-0748
Candidate of Sciences in Biology Moscow, Russia
S. V Gudkov
Prokhorov General Physics Institute of the Russian Academy of Sciences
Email: s_makariy@rambler.ru
ORCID iD: 0000-0002-8814-6906
Doctor of Sciences in Biology, Professor of the Russian Academy of Sciences Moscow, Russia
References
- Kudryashova O.B. Dispersed Systems: Physics, Optics, Invariants, Symmetry. MDPI; 2022. 1602 p.
- Sullivan J.M, Twardowski M.S. Angular shape of the oceanic particulate volume scattering function in the backward direction. Applied Optics. 2009;48(35):6811–6819.
- Koestner D., Stramski D., Reynolds R.A. Polarized light scattering measurements as a means to characterize particle size and composition of natural assemblages of marine particles. Applied optics. 2020;59(27):8314–8334.
- Palberg T., Ballauff M., Kremer F., Lagaly G. Optical methods and physics of colloidal dispersions. Springer; 1997.
- Sobczyk K., Chmielewski R., Kruszka L., Rekucki R. Analysis of the Influence of Silty Sands Moisture Content and Impact Velocity in SHPB Testing on Their Compactability and Change in Granulometric Composition. Applied Sciences. 2023;13(8):4707.
- Jönsson J., Berrocal E. Multi˗Scattering software: part I: online accelerated Monte Carlo simulation of light transport through scattering media. Optics Express. 2020;28(25):37612–37638.
- Azema N. Sedimentation behaviour study by three optical methods – granulometric and electrophoresis measurements, dispersion optical analyser. Powder Technology. 2006;165(3):133–139.
- Solovyevа D., Altuninа А., Tretyak M., Mochalov К., Oleinikov V. Modern Methods of Fluorescence Nanoscopy in Biology (a Review). Russian Journal of Bioorganic Chemistry. 2024;50(4):1215–1236.
- Kanamatova D.A. Obespechenie prodovolstvennoi bezopasnosti Rossiyskoi Federatsii. Vestnik evraziyskoi nauki. 2021;13(6):62.
- Harding F. Milk quality. Springer; 1995.
- Truong T., Lopez C., Bhandari B., Prakash S. Dairy fat products and functionality. Springer; 2020.
- Alsaftli Z. The obstacles to using milk composition as management tool in dairy cattle farms. J. Adv. Dairy. Res. 2020;8:233.
- Shkirin A., Astashev M., Ignatenko D., Kozlov V., Gudkov S. Fluorescence˗Scatterometric Method for Measuring the Percentage of Dispersed Components of Emulsions as Applied to Assessing the Quality of Milk. Bulletin of the Lebedev Physics Institute. 2023;50(5):166–172.
- Shkirin A.V., Astashev M.E., Ignatenko D.N., Suyazov N.V., Chirikov S.N., Kirsanov V.V. et al. A Monoblock Light˗Scattering Milk Fat Percentage and Somatic Cell Count Sensor for Use in Milking Systems. Sensors. 2023;23(20):8618.
- Schweiger M., Arridge S., Hiraoka M., Delpy D. The finite element method for the propagation of light in scattering media: boundary and source conditions. Medical physics. 1995;22(11):1779–1792.
- Zhu C., Liu Q. Review of Monte Carlo modeling of light transport in tissues. Journal of biomedical optics. 2013;18(5):050902.
Supplementary files

