Three types of olivine crystal size distribution in dunites from the Yoko-Dovyren layered massif as signals of their different crystallization history

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Crystal size distributions (CSD) of olivine were obtained for 17 samples of plagiodunite and Pl-bearing dunite from the central part of the Yoko-Dovyren massif, northern Baikal region, Russia. Three types of CSD were identified: loglinear, bimodal, and lognormal. Combining these data with the results of petrological reconstructions, which earlier revealed two main types of the Dovyren magmas (using the method of geochemical thermometry), we proposed a basic scenario of interaction between magmatic suspensions of different temperature to explain the diversity of the CSD. The intratelluric olivine transported by magmas of different temperature, which had not subjected to abrupt cooling or heating in the chamber, retained an original loglinear CSD. For some portions of the hottest magma (~1290°C), it is assumed that the original olivine evolved into a bimodal CSD due to accelerated crystallization at faster cooling of the hightemperature injections contacting relatively cold crystal mush (~1190°C). An interpretation of the lognormal CSD suggests that part of the olivine crystals composing the protocumulate systems efficiently interacted with the pore melt infiltrating upward during the compaction of the underlying crystal mush. This led to cycles of partial dissolution and regrowth of the olivine grains resulting in a final lognormal CSD. The infiltrating hot melt, which was undersaturated with immiscible sulfide liquid, could dissolve sulfides preexisting in the lowtemperature mush. This produced dunites with lognormal CSD relatively depleted in sulfur and chalcophile elements. The lognormal CSD is considered to be a marker of crystal mush regions through which the focused infiltration of the pore melt proceeded.

Full Text

Restricted Access

About the authors

S. N. Sobolev

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: ssn_collection@bk.ru
Russian Federation, Moscow

A. A. Ariskin

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences; Moscow State University

Email: ssn_collection@bk.ru

Faculty of Geology

Russian Federation, Moscow; Moscow

G. S. Nikolaev

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

Email: ssn_collection@bk.ru
Russian Federation, Moscow

I. V. Pshenitsyn

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

Email: ssn_collection@bk.ru
Russian Federation, Moscow

References

  1. Арискин А.А., Николаев Г.С., Данюшевский Л.В. и др. Геохимические свидетельства фракционирования платиноидов иридиевой группы на ранних стадиях кристаллизации довыренских магм (Северное Прибайкалье, Россия) // Геология и геофизика. 2018. № 5. С. 573–588.
  2. Кислов Е.В. Йоко-Довыренский расслоенный массив. Улан-Удэ: Изд. Бурятского НЦ, 1998. 265 с.
  3. Конников Э.Г., Ковязин С.В., Некрасов А.Н., Симакин С.Г. Флюидно-магматическое взаимодействие мантийных магм с породами нижней коры: данные изучения включений в минералах интрузий // Геохимия. 2005. № 10. С. 1–10.
  4. Орсоев Д.А. Aнортозиты малосульфидного платиноносного горизонта (Риф I) в верхнерифейском Йоко-Довыренском массиве (Северное Прибайкалье): новые данные по составу, ЭПГ-Cu-Ni минерализации, флюидному режиму и условиям образования // Геология рудн. месторождений. 2019. Т. 61. № 4. C. 15–43. https://doi.org/10.31857/S0016-777061415-43
  5. Перцев Н.Н., Шабынин Л.И. Скарновые, карбонатные и бруситовые ксенолиты Йоко-Довыренского массива. Контактовые процессы и оруденение в габбро-перидотитовых интрузивах. М.: Наука, 1978. С. 85–96.
  6. Соболев С.Н., Арискин А.А., Николаев Г.С. и др. Распределения кристаллов по размеру как ключ к эволюции протокумулуса в расслоенных массивах: эксперименты, расчеты и практика определения CSD// Петрология. 2023. Т. 31. № 6. С. 649–665.
  7. Френкель М.Я., Ярошевский А.А., Арискин А.А. и др. Динамика внутрикамерной дифференциации базитовых магм: М.: Наука, 1988. 216 с.
  8. Annen C. From plutons to magma chambers: Thermal constraints on the accumulation of eruptible silicic magma in the upper crust // Earth Planet. Sci. Lett. 2009. V. 284. № 3–4. Р. 409–416. https://doi.org/10.1016/j.epsl.2009.05.006
  9. Ariskin A.A., Danyushevsky L.V., Kislov E.V. et al. Cu-Ni-PGE fertility of the Yoko-Dovyren layered massif (Northern Transbaikalia, Russia): thermodynamic modeling of sulfide compositions in low mineralized dunites based on quantitative sulfide mineralogy // Mineral. Deposita. 2016. V. 51. № 8. P. 993–1011.
  10. Ariskin A., Danyushevsky L., Nikolaev G. et al. The Dovyren Intrusive Complex (Southern Siberia, Russia): Insights into dynamics of an open magma chamber with implications for parental magma origin, composition, and Cu-Ni-PGE fertility // Lithos. 2018. V. 302–303. Р. 242–262. https://doi.org/10.1016/j.lithos.2018.01.001
  11. Barnes S.J. The effect of trapped liquid crystallization on cumulus mineral compositions in layered intrusions // Contrib. Mineral. Petrol. 1986. V. 15. P. 71–74.
  12. Boorman S., Boudreau A., Kruger F.J. The Lower Zone-Critical Zone transition of the Bushveld Complex: а quantitative textural study // J. Petrol. 2004. V. 45. № 6. P. 1209–1235. https://doi.org/10.1093/petrology/egh011
  13. Cabane H., Laporte D., Provost A. An experimental study of Ostwald ripening of olivine and plagioclase in silicate melts: Implications for the growth and size of crystals in magmas // Contrib. Mineral. Petrol. 2005. V. 150. № 1. P. 37–53. https://doi.org/10.1007/s00410-005-0002-2
  14. Caricchi L., Burlini L., Ulmer P. et al. Non-Newtonian rheology of crystal-bearing magmas and implications for magma ascent dynamics // Earth Planet. Sci. Lett. 2007. V. 264. № 3–4. P. 402–419. https://doi.org/10.1016/j.epsl.2007.09.032
  15. Cashman K.V., Marsh B.D. Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization II: Makaopuhi lava lake // Contrib. Mineral. Petrol. 1988. V. 99. № 3. P. 292–305. https://doi.org/10.1007/BF00375363
  16. DeHoff R.T. A geometrically general theory of diffusion controlled coarsening // Acta Metallurgica еt Materialia. 1991. V. 39. № 10. P. 2349–2360. https://doi.org/10.1016/0956-7151(91)90016-T
  17. Faul U.H., Scott D. Grain growth in partially molten olivine aggregates // Contrib. Mineral. Petrol. 2006. V. 151. № 1. P. 101–111. https://doi.org/10.1007/s00410-005-0048-1
  18. Godel L.M., Barnes S.J., Barnes S. Deposition mechanisms of magmatic sulphide liquids: evidence from high-resolution X-ray computed tomography and trace element chemistry of komatiite-hosted Disseminated Sulphides // J. Petrol. 2013. V. 54. № 7. P. 1455–1481. https://doi.org/10.1093/petrology/egt018
  19. Helz R.T. The Stillwater Complex, Montana: a subvolcanic magma chamber? // Amer. Mineral. 1995. V. 80. № 11–12. P. 1343–1346. https://doi.org/10.2138/am-1995-11-1225
  20. Higgins M.D. Origin of anorthosite by textural coarsening: quantitative measurements of a natural sequence of textural development // J. Petrol. 1998. V. 39. № 7. P. 1307–1323. https://doi.org/10.1093/petroj/39.7.1307
  21. Higgins M.D. Measurement of crystal size distributions // Amer. Mineral. 2000. V. 85. № 9. P. 1105–1116. https://doi.org/10.2138/am-2000-8-901
  22. Higgins M.D. Quantitative textural measurements in igneous and metamorphic petrology. Cambridge University Press, 2006. 265 p. https://doi.org/10.1017/CBO9780511535574
  23. Holness M.B., Cheadle M.J., McKenzie D. On the use of changes in dihedral angle to decode late-stage textural evolution in cumulates // J. Petrol. 2005. V. 46. № 8. P. 1565–1583. https://doi.org/10.1093/petrology/egi026
  24. Huppert H.E., Sparks R.S.J. The fluid dynamics of a basaltic magma chamber replenished by influx of hot, dense ultrabasic magma // Contrib. Mineral. Petrol. 1981. V. 75. № 3. P. 279–289. https://doi.org/10.1007/BF01166768
  25. Lavorel G., Le Bars M. Sedimentation of particles in a vigorously convecting fluid // Physical Rev. E – Statistical, Nonlinear, and Soft Matter Physics. 2009. V. 80. № 4. P. 1–8. https://doi.org/10.1103/PhysRevE.80.046324
  26. Lifshitz I.M., Slyozov V.V. The kinetics of precipitation from supersaturated solid solutions // J. Phys. Chem. Solids. 1961. V. 19. № 1–2. P. 35–50. https://doi.org/10.1016/0022-3697(61)90054-3
  27. Marsh B.D. On the interpretation of crystal size distributions in magmatic systems // J. Petrol. 1998. V. 39. № 4. P. 553–599. https://doi.org/10.1093/petroj/39.4.553
  28. Menand T. The mechanics and dynamics of sills in layered elastic rocks and their implications for the growth of laccoliths and other igneous complexes // Earth Planet. Sci. Lett. 2008. V. 267. № 1–2. P. 93–99. https://doi.org/10.1016/j.epsl.2007.11.043
  29. Milman-Barris M.S., Beckett J.R., Baker M.B. et al. Zoning of phosphorus in igneous olivine // Contrib. Mineral. Petrol. 2008. V. 155. № 6. P. 739–765. https://doi.org/10.1007/s00410-007-0268-7
  30. Mungall J.E., Su S. Interfacial tension between magmatic sulfide and silicate liquids: Constraints on kinetics of sulfide liquation and sulfide migration through silicate rocks // Earth Planet. Sci. Lett. 2005. V. 234. № 1–2. P. 135–149. https://doi.org/10.1016/j.epsl.2005.02.035
  31. Ni H., Keppler H., Walte N. et al. In situ observation of crystal growth in a basalt melt and the development of crystal size distribution in igneous rocks // Contrib. Mineral. Petrol. 2014. V. 167. Р. 1003. https://doi.org/10.1007/s00410-014-1003-9
  32. Park Y., Hanson B. Experimental investigation of Ostwald-ripening rates of forsterite in the haplobasaltic system // J. Volcanol. Geotherm. Res. 1999. V. 90. № 1–2. P. 103–113. https://doi.org/10.1016/S0377-0273(99)00023-2
  33. Patočka V., Calzavarini E., Tosi N. Settling of inertial particles in turbulent Rayleigh-Bénard convection // Physical Rev. Fluids. 2020. V. 5. № 11. https://doi.org/10.1103/PhysRevFluids.5.114304
  34. Resmini R.G. Modeling of crystal size distributions (CSDs) in sills // J. Volcanol. Geotherm. Res. 2007. V. 161. № 1–2. P. 118–130. https://doi.org/10.1016/j.jvolgeores.2006.06.023
  35. Shea T., Hammer J.E., Hellebrand E. et al. Phosphorus and aluminum zoning in olivine: contrasting behavior of two nominally incompatible trace elements // Contrib. Mineral. Petrol. 2019. V. 174. Р. 85. https://doi.org/10.1007/s00410-019-1618-y
  36. Schiavi F., Walte N., Keppler H. First in situ observation of crystallization processes in a basaltic-andesitic melt with the moissanite cell // Geology. 2009. V. 37. № 11. P. 963–966. https://doi.org/10.1130/G30087A.1
  37. Simakin A.G., Bindeman I.N. Evolution of crystal sizes in the series of dissolution and precipitation events in open magma systems // J. Volcanol. Geotherm. Res. 2008. V. 177. № 4. P. 997–1010. https://doi.org/10.1016/j.jvolgeores.2008.07.012
  38. Simakin A.G., Devyatova V.N., Nekrasov A.N. Crystallization of Cpx in the Ab-Di system under the oscillating temperature: contrast dynamic modes at different periods of oscillation // Еds. Y. Litvin, О. Safonov. Advances in Experimental and Genetic Mineralogy. Springer Mineralogy. Springer Cham, 2020. https://doi.org/10.1007/978-3-030-42859-4_5
  39. Špillar V., Dolejš D. Kinetic model of nucleation and growth in silicate melts: Implications for igneous textures and their quantitative description // Geochim. Cosmochim. Acta. 2014. V. 131. P. 164–183. https://doi.org/10.1016/j.gca.2014.01.022
  40. Turner J.S., Campbell I.H. Convection and mixing in magma chambers // Earth Sci. Rev. 1986. V. 23. № 4. P. 255–352. https://doi.org/10.1016/0012-8252(86)90015-2
  41. Welsch B., Faure F., Famin V. et al. Dendritic crystallization: а single process for all the textures of olivine in basalts? // J. Petrol. 2013. V. 54. № 3. P. 539–574. https://doi.org/10.1093/petrology/egs077
  42. Welsch B., Hammer J., Hellebrand E. Phosphorus zoning reveals dendritic architecture of olivine // Geology. 2014. V. 42. № 10. P. 867–870. https://doi.org/10.1130/G35691.1
  43. Zieg M.J., Marsh B.D. Crystal size distributions and scaling laws in the quantification of igneous textures // J. Petrol. 2002. V. 43. № 1. P. 85–101. https://doi.org/10.1093/petrology/43.1.85

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. (a) Simplified geological scheme of the Yoko-Dovyren massif, after (Ariskin et al., 2018). The names of the three main sections are shown in bold. The inset (b) shows the locations of sampling points, including samples classified without instrumental determination of CSD, but visually and based on geochemical data (Ariskin et al., 2018) assigned by us to one of the three types. The ruler is plotted from the lower contact of the massif. (c) Characteristic slope of the Bolshoy Creek valley, where the lower part of the dunite section is exposed. It is evident that the outcrop, although primary, is not continuous. (d) Satellite image with massif contours.

Download (811KB)
3. Fig. 2. (a) sample 09DV501-40 – mesocumulate dunite with loglinear CSD; (b) sample 09DV501-59 – mesocumulate dunite with bimodal CSD. Elongated olivine crystals are outlined in red; (c) sample 09DV501-37 – mesocumulate dunite with lognormal CSD. Blue arrows in (b, c) mark polyphase inclusions in olivine cores. (d) sample 07DV124-17b – dunite close to adcumulate, with bimodal CSD, notably containing elongated olivine oriented according to foliation. Subgrain boundaries are clearly visible (red arrows); (e) sample 07DV124-12 – dunite mesocumulate with lognormal CSD, locally characteristic adcumulate olivine grain boundaries are present (yellow arrows); (e) sample 13DV547-1 – plagiolherzolite orthocumulate with poikilitic orthopyroxene; (g) sample 09DV501-7 – plagiolherzolite orthocumulate with elongated olivine. Scale bar – 1 mm.

Download (1MB)
4. Fig. 3. (a) MgO–FeO diagram illustrating the position of rocks relative to pure stoichiometric olivine. The green line is the mixing trend of the model high-temperature melt and Fo88, the pink line is the same for the low-temperature liquid and Fo86 (Ariskin et al., 2018); in (b) and (c) a direct correlation is visible, controlled by the ratio of olivine and intercumulus minerals. The absence of grouping of rocks of different structural types is important.

Download (142KB)
5. Fig. 4. Size distribution of olivine crystals: L is the linear size (the major axis of the ellipsoid), PD is the population density. (a), (b), (c) are log-linear, bimodal, and log-normal CSD, respectively. The graphs are constructed with a stereological transformation with the same ellipsoid parameters (1 : 1.2 : 1.5); (d), (d), (e) are constructed with a stereological transformation with the ellipsoid parameters selected in each case individually to match the calculated and actual volume fractions of olivine. Each CSD type is illustrated by insets with thin-section images of typical samples; the inset sizes are 1 × 1 cm.

Download (531KB)
6. Fig. 5. CSD of olivine and geochemical diagrams for the total contents in rocks (V, Cr, PGE, Cu, Ni, S and Zr), the SCSS value was calculated in the COMAGMAT-5.3 program.

Download (336KB)
7. Fig. 6. Schematic scenario of the formation of the lower part of the Yoko-Dovyren massif section with the formation of hidden layering and three types of olivine CSD. Several stages of evolution are shown: t1 – intrusion of a colder portion (Fo86) of magma with a log-linear CSD between the crystalline mush and the crystal-poor main volume of magma in the chamber, when the compaction of the mush has not yet begun; t2 – intrusion of a hotter portion (Fo88) with a log-linear CSD, when crystallization accelerates at its base and roof and a bimodal CSD is formed, compaction begins in the mush; t3 – intrusion of the next hot portion. Compaction occurs in the mush, heterogeneous in temperature and composition, in the cold volumes of the mush, at the site of filtration of hot pore melt, dissolution of olivine, chromite and sulfides occurs. The modern section shows the position of points with three types of CSD and the observed amount of olivine (φ) calculated from the Zr content. The layering by Fo and the porosity estimate are based on geochemical data for the Bolshoy-Tsentralny section (Ariskin et al., 2018) with slight simplifications.

Download (554KB)

Note

1Additional information for this article is available at doi: for authorized users.


Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies