Properties of fluids during metasomatic alteration of metamorphic rocks under P-T conditions of the middle crust: an example from the Bolshie Keivy region, Belomorian-Lapland orogen, Fennoscandian shield

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Properties of fluids under P–T conditions of the middle crust were studied with reference to the metasomatic alteration of metamorphic rocks (amphibolite facies) of the Bolshie Keivy nappe of the Keivy terrane of the Belomorian–Lapland collision orogen of the Fennoscandian shield. Properties of the fluids were studied in five selected types of rocks: metamorphic schists and gneisses with graphite, metasomatic quartz rocks with a high content of graphite, kyanite–quartz veins with wall-rock metasomatites, and metasomatic quartz-bearing kyanite rocks and anchimonomineral quartz veins. NaCl, CaCl2, CO2, N2, CH4, heavier hydrocarbons, and graphite were identified in the fluid inclusions using microthermometry and Raman spectroscopy. Using the method of multiequilibrium thermobarometry for mineral associations and the density of CO2 inclusions, a retrograde P–T path was calculated, which reflects the P–T exhumation history of the rocks. An explanation was proposed for the presence of water inclusions with NaCl of low salinity among inclusions of high salinity with NaCl and CaCl2. Comparison of data on the H2O activity (inferred from mineral equilibria) and salt content (data on fluid inclusions) with those of a model fluid (thermodynamic model of the H2O–NaCl–CaCl2–CO2 system) showed a good agreement between natural and model data. Natural and model data were synthesized to analyze variations in the phase state and chemical composition, fluid properties, including H2O activity, density, and salinity along the retrograde P–T trend.

Full Text

Restricted Access

About the authors

S. А. Bushmin

Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences

Author for correspondence.
Email: s.a.bushmin@ipgg.ru
Russian Federation, St. Petersburg

E. A. Vapnik

Ben-Gurion University of the Negev

Email: s.a.bushmin@ipgg.ru

Department of Geological and Environmental Sciences

Israel, Beer-Sheva

М. V. Ivanov

Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences

Email: s.a.bushmin@ipgg.ru
Russian Federation, St. Petersburg

A. В. Kol’tsov

Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences

Email: s.a.bushmin@ipgg.ru
Russian Federation, St. Petersburg

Y. М. Lebedeva

Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences

Email: s.a.bushmin@ipgg.ru
Russian Federation, St. Petersburg

О. V. Aleksandrovich

Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences

Email: s.a.bushmin@ipgg.ru
Russian Federation, St. Petersburg

Е. V. Savva

Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences

Email: s.a.bushmin@ipgg.ru
Russian Federation, St. Petersburg

References

  1. Аранович Л.Я. Роль рассолов в высокотемпературном метаморфизме и гранитизации // Петрология. 2017. Т. 25. № 5. С. 491–503.
  2. Аранович Л.Я., Закиров И.В., Сретенская Н.Г., Геря Т.В. Тройная система H2O-CO2-NaCl при высоких Р-Т параметрах: эмпирическая модель смешения // Геохимия. 2010. № 5. С. 1–10.
  3. Балаганский В.В. Главные этапы тектонического развития северо-востока Балтийского щита в палеопротерозое: Автореф. дис. … докт. геол.-мин. наук. СПб., 2002, 32 с.
  4. Балаганский В.В., Раевский А.Б., Мудрук С.В. Комплексные геолого-геофизические модели древних щитов. Апатиты: ГИ КНЦ РАН, 2009. С. 110–117.
  5. Балаганский В.В., Раевский А.Б., Мудрук С.В. Нижний докембрий Кейвского террейна, Северо-Восток Балтийского щита: стратиграфический разрез или коллаж тектонических пластин // Геотектоника. 2011. № 2. С. 32–48.
  6. Бельков И.В. Кианитовые сланцы свиты Кейв. М.-Л.: Изд. АН СССР, 1963. 321 с.
  7. Борисенко А.С. Анализ солевого состава растворов газово-жидких включений в минералах методом криометрии // Использование методов термобарогеохимии при поисках и изучении рудных месторождений. М.: Недра, 1982. С. 37–47.
  8. Бушмин С.А., Глебовицкий В.А., Савва Е.В. и др. Возраст высокобарического метасоматоза в зонах сдвиговых деформаций при коллизионном метаморфизме в Лапландском гранулитовом поясе: U-Pb SHRIMP-II – датирование цирконов из силлиманит-гиперстеновых пород Порьегубского покрова // Докл. АН. 2009. Т. 428. № 6. С. 792–796.
  9. Бушмин С.А., Глебовицкий В.А., Пресняков С.Л. и др. Новые данные о возрасте (SHRIMP-II) протолита и палеопротерозойских преобразований архейского Кейвского террейна // Докл. АН. 2011а. Т. 438. № 2. С. 237–241.
  10. Бушмин С.А., Глебовицкий В.А., Прасолов Э.М. и др. Происхождение и состав флюида, ответственного за метасоматические процессы в зонах сдвиговых деформаций тектонического покрова Большие Кейвы Балтийского щита: изотопный состав углерода графитов // Докл. АН. 2011б. Т. 438. № 3. С. 379–383.
  11. Бушмин С.А., Вапник Е.А., Иванов М.В. и др. Флюиды гранулитов высоких давлений // Петрология. 2020. Т. 28. № 1. С. 23–54.
  12. Бушмин С.А., Кольцов А.Б., Лебедева Ю.М., Савва Е.В. Метасоматическое преобразование амфиболитов в корундсодержащие плагиоклазиты: зональность, численная модель процесса (на примере уникального месторождения Хитостров, Фенноскандинавский щит // Петрология. 2023. Т. 31. № 6. С. 602–622.
  13. Галимов Э.М. Геохимия стабильных изотопов углерода. М.: Недра, 1968. 224 с.
  14. Доливо-Добровольский Д.В. TriQuick: программа для построения прямоугольных и треугольных точечных диаграмм, а также для отображения, создания и редактирования диаграммной графики. 2012. URL: http://www.dimadd.ru/ru/Programs/triquick
  15. Доливо-Добровольский Д.В. TC_Comb: оболочка программы THERMOCALC для эффективной мультиравновесной геотермобарометрии методом avPT с визуализацией и анализом результатов. 2013. URL: http://www.dimadd.ru/ru/Programs/tccomb
  16. Дуденко Л.Н. Геохимические структуры эндогенных систем. Л.: Недра, 1981. 193 с.
  17. Жданов В.В., Беляев Г.М., Блюман Б.А. и др. Региональные метаморфо-метасоматические формации. Л.: Недра, 1983. 280 с.
  18. Иванов М.В. Термодинамическая модель флюидной системы H2O-CO2-NaCl-CaCl2 при Р-Т параметрах средней и нижней коры // Петрология. 2023. Т. 31. № 4. С. 408–418.
  19. Иванов М.В., Бушмин С.А. Уравнение состояния флюидной системы H2O-CO2-CaCl2 и свойства флюидных фаз при P-T параметрах средней и нижней коры // Петрология. 2019. Т. 27. № 4. С. 431–445.
  20. Иванов М.В., Бушмин С.А. Термодинамическая модель флюидной системы H2O-CO2-NaCl при Р-Т параметрах средней и нижней коры // Петрология. 2021. Т. 29. № 1. С. 90–103.
  21. Кольцов А.Б., Бушмин С.А. Метасоматоз в термоградиентных условиях: модели сопряженного переноса тепла и взаимодействия флюид–порода // Петрология. 2022. Т. 30. № 3. С. 309–330.
  22. Файф У., Прайс Н., Томпсон А. Флюиды в земной коре. М.: Мир, 1981. 436 с.
  23. Фомина Е.Н., Козлов Е.Н., Лохова О.В., Лохов К.И. Графит как индикатор контактового воздействия Западно-Кейвской интрузии щелочных гранитов, Кольский полуостров // Вестник МГТУ. 2017. Т. 20. № 1/1. С. 129–139.
  24. Харитонов Л.Я. Опыт тектонического районирования восточной части Балтийского щита // Ученые записки ЛГУ. Сер. геол. 1957. Вып. 9. № 225. С. 34–70.
  25. Щеглова Т.П., Маслов А.Т. Эволюция состава гранатов и амфиболов в породах Кейвского блока // Записки ВМО. 1994. № 5. С. 76–88.
  26. Щеглова Т.П., Скублов С.Г., Другова Г.М., Бушмин С.А. Особенности химического состава ставролитов высокоглиноземистых пород Кейвского блока // Записки ВМО. 2000. № 2. С. 71–80.
  27. Шмулович К.И. Двуокись углерода в высокотемпературных процессах минералообразования. М.: Наука, 1988. 183 с.
  28. Ague JJ. Fluid flow in the deep crust // Treatise on Geochemistry. V. 4: The Crust. Еds. H.D. Holland, K.K. Turekian. Oxford, UK: Elsevier, 2014. 2nd ed. P. 203–247.
  29. Aranovich L.Y., Safonov O.G. Halogens in high-grade metamorphism // The Role of Halogens in Terrestrial and Extraterrestrial Processes. Eds. D.E. Harlov, L.Y. Aranovich. Springer Geochemistry. 2018. P. 713–757.
  30. Bakker R.J. Re-equilibration processes in f luid inclusion assemblages // Minerals. 2017. V. 7. № 117. P. 1–19.
  31. Bakker R.J. Package FLUIDS1. Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties // Chem. Geol. 2003. V. 194. № 1–3. P. 3–23.
  32. Baumgartner M., Ronald J., Bakker R.J., Doppler G. Reequilibration of natural H2O-CO2-salt-rich fluid inclusions in quartz. Part 1. Experiments in pure water at constant pressures and differential pressures at 600°C // Contrib. Mineral. Petrol. 2014. V. 167. P. 1017.
  33. Bridgwater D., Scott D.J., Balagansky V.V. et al. Age and provenance of early Precambrian metasedimentary rocks in the Lapland-Kola Belt, Russia: evidence from Pb and Nd isotopic data // Terra Nova. 2001. V. 13. № 1. P. 32–37.
  34. Bushmin S.A., Glebovitsky V.A. Scheme of mineral facies of metamorphic rocks and its application to Fennoscandian shield with representative sites of orogenic gold mineralization // Transactions of Karelian Research Centre RAS. Precambr. Geol. Ser. 2016. № 2. P. 3–27.
  35. Bushmin S., Alexeev N., Dolivo-Dobrovolsky D., Shcheglova T. Metasomatic processes, P-T retrograde evolution and tectonic dynamics in trust structures, Lapland-Kola mobile belt, Eastern Baltic Shield // Eurobridge Workshop. Vilnius. 1997. P. 15–17.
  36. Chu H., Chi G., Chou I-M. Freezing and melting behaviors of H2O–NaCl–CaCl2 solutions in fused silica capillaries and glass-sandwiched films: implications for fluid inclusion studies // Geofluids. 2016. V. 16. P. 518–532.
  37. Duan Z., Moller N., Weare J.H. Molecular dynamics simulation of PVT properties of geological fluids and a general equation of state of nonpolar and weakly polar gases up to 2000 K and 20,000 bar // Geochim. Cosmochim. Acta. 1992. V. 56. P. 3839–3845.
  38. Dubois M., Monnin C., Castelain T. et al. Investigation of the H2O-NaCl-LiCl system: a synthetic fluid inclusion study and thermodynamic modeling from –50° to +100°C and up to 12 mol/kg // Econom. Geol. 2010. V. 105. P. 329–338.
  39. Holland T.J.B., Powell R. An internally consistent thermodynamic dataset for phases of petrological interest // J. Metamorph. Geol. 1998. V. 16. P. 309–343.
  40. Manning C.E. Fluids of the lower Crust: Deep is different // Annu. Rev. Earth Planet. Sci. 2018. V. 46. P. 67–97.
  41. Manning C.E., Aranovich L.Y. Brines at high pressure and temperature: Thermodynamic, petrologic and geochemical effects // Precambr. Res. 2014. V. 253. P. 6–16.
  42. Mysen B. Fluids and physicochemical properties and processes in the Earth // Progress in Earth and Planetary Science. Carnegie Institution Washington, 5251 Broad Branch Rd., NW, Washington, DC. 2015, USA. 2022. P. 1–39.
  43. Newton R.C., Aranovich L.Ya., Touret J.L.R. Streaming of saline fluids through Archean crust: Another view of charnockite-granite relations in southern India // Lithos. 2019. V. 346–347. P. 1–10.
  44. Perchuk L.L., Gerya T.V. Fluid control of charnockitization // Chem. Geol. 1993. V. 108. P. 175–186.
  45. Powell R., Holland T.J.B. Optimal geothermometry and geobarometry // Amer. Mineral. 1994. V. 79. P. 120–133.
  46. Powell R., Holland T.J.B. An internally consistent thermodynamic dataset with uncertainties and correlations: 3. Аpplication methods, worked examples and a computer program // J. Metamorph. Geol. 1988. V. 6. P. 173–204.
  47. Roedder E. Fluid inclusions // Reviews in Mineralogy. V. 12. Mineral. Soc. America. 1984. 644 p.
  48. Steele-MacInnis M., Bodnar R.J., Naden J. Numerical model to determine the composition of H2O–NaCl–CaCl2 fluid inclusions based on microthermometric and microanalytical data // Geochim. Cosmochim. Acta. 2011. V. 75. P. 21–40.
  49. Steele-MacInnis M., Manning C.E. Hydrotermal properties of geologic fluids // Elements. 2020. V. 16. P. 375–380.
  50. Steele-MacInnis M., Ridley J., Lecomberri-Sanchez P. et al. Application of low-temperature microthermometric data for interpreting multicomponent fluid inclusion compositions // Earth Sci. Rev. 2016. V. 159. P. 14–35.
  51. Whitney D.L., Evans B.W. Abbreviations for names of rock-forming minerals // Amer. Mineral. 2010. V. 95. P. 185–187.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme of cover structures of the northern part of the Keivy Terrane (Bushmin et al., 2011a), with modifications. 1 - granites, granite-gneisses and gneisses of the Kola Craton, 2 - anorthosites, 3 - alkaline granites, 4 - garnet-biotite and garnet-amphibole-biotite gneisses with amphibolite bodies, alkaline metasomatites, 5 - high-alumina metamorphic and metasomatic rocks with amphibolite and plagioclasite bodies (meta-anorthosites), 6 - tectonic boundaries along thrusts, 7 - color symbols indicate sampling locations of different rock types. Type 1: a - metamorphic gneisses and schists with graphite; b - amphibolites; type 2: c - metasomatic quartz rocks with increased graphite content; type 3: g – kyanite-quartz veins with near-vein metasomatites; type 4: d – metasomatic kyanite rocks; type 5: e – anchimonomineral quartz veins. The inset shows the location of the study area.

Download (454KB)
3. Fig. 2. Photos of samples of different rock types and salt content in brine inclusions. Type 1: (a) and (b) – gneisses and schists with graphite, Bt1 and Bt2 – early and late generation biotite, (c) – salt content in gneisses and schists (yellow triangles – inclusions with NaCl only). Type 2: metasomatic Qz rocks with increased graphite content, (d) – black banded graphite-rich Ky-Qz blastomylonite, (d) – enlarged section of blastomylonite, (e) – black-gray massive graphite-rich quartz metasomatite, (g) – salt content in metasomatic Qz rocks rich in Gt (yellow circles – inclusions with NaCl only).

Download (921KB)
4. Fig. 3. Photos of inclusions in the studied rock types. BR – brine, H – halite, L – liquid phase, V – gas phase. Type 1: (a) – p-inclusion of CO2 with Gt and ps-inclusions of brine, sample B878-4; type 2: (b) – ps-inclusions of brine with halite and ps-inclusions of CO2, sample E3-1a; (c) and (d) – ps-inclusions of brine with halite ±CO2 and ps-inclusions of CO2, sample E1-3b; (d) – ps-inclusions of brine with halite and ps-inclusions of CO2, sample E5-4; (e) – ps-inclusions of brine with halite, CO2, Cal and ps-inclusions of CO2, sample E5-4; (g) – ps-inclusions of CH4 with CnHm and H2, sample E5-4; (z) – p-inclusions of CH4 with CnHm and Gt, sample K8-a; (i) – p-inclusion of C2H6 with CnHm and CH4, sample K8-d.

Download (740KB)
5. Fig. 4. Photos of samples of different rock types and salt content in brine inclusions. Type 3: (a) and (b) – Ky-Qz vein with wall-vein metasomatite and salt content (yellow circles – inclusions with NaCl only). Type 4: (c) and (d) – metasomatic Ky rocks and salt content (yellow circles – inclusions with NaCl only). Type 5: (d) – anchimonomineral Qz vein, (e) – wall-vein zone ~0–5 cm, (g) – salt content in Qz vein (yellow circles – inclusions with NaCl only).

Download (694KB)
6. Fig. 5. Photos of inclusions in the studied rock types. BR – brine, H – halite, L – liquid phase, V – gas phase. Type 3: (a) – association of ps-inclusions of brine, brine with H and Cal, CO2 inclusions in the Ky-Qz vein, sample B880-6a; (b) – ps-inclusion of CH4 among CO2 inclusions in the wall-vein metasomatite, sample B880-6b; (c) – ps-inclusion of CO2 in the wall-vein metasomatite, sample B884-1v. Type 4: (d) – ps-inclusions of brine with H, sample B901-6; (e) – p- and ps-inclusions of CO2, sample B901-6. Type 5: (e) – association of ps-inclusions of brine and CO2 inclusions, next to it a group of p-inclusions of CO2, sample B926-3.

Download (566KB)
7. Fig. 6. Р-Т conditions of formation of the studied metamorphic and metasomatic rocks of the gneiss-schist sequence of the Bol'shiye Keivy tectonic nappe. Legend of rock types as in Fig. 1. Metamorphic facies: GS – greenschist, AM – amphibolite, GR – granulite, EC – eclogite (Bushmin, Glebovitsky, 2016). Dashed red line – generalized Р-Т trend of retrograde change in rock formation conditions. 1 – area of ​​Р-Т parameters (Р ~ 7–6.5 kbar, Т ~ 525–500°C) of Ky-Qz veins with wall-vein metasomatites (type 3) according to (Bushmin et al., 2011б); 2 – decompression area (6.8–3.4 kbar at ~500°C) according to microthermometry data of CO2 inclusions (Table 3) in Ky-Qz veins with near-vein metasomatites (type 3), Qz-Ky veins, veinlets and veinlet zones (type 4) and anchimonomineral Qz veins (type 5).

Download (134KB)
8. Fig. 7. Examples of the results of calculating the P-T parameters by the avPT method for typical samples of the studied rock types. (a, b) – metamorphic gneiss and schist; (c, d, d) – metasomatic quartz rocks with increased graphite content; (e) – metasomatic Ky quartzite.

Download (1MB)
9. Fig. 8. Section of the phase diagram of the H2O-NaCl-CaCl2-CO2 fluid system through the H2O-CO2-salt ratio vertices. ysalt – mole fractions of total salinity in the quaternary system, yCO2 – mole fractions of CO2 in the quaternary system. Solvi and phase fields at T = 560°C, P = 7.5 kbar and xr = 0.75 (ratio of the mole fraction of NaCl to the total mole fraction of salt). Numbers designate regions (fields) of different phase composition: 1 – homogeneous fluid, 2 – two coexisting fluid phases, 3 – two fluid phases coexisting with a solid phase of NaCl (the boundaries are designated for T = 560°C, P = 7.5 kbar, xr = 0.75 – bold green lines). Thin black lines connect solvus points with the same water activities. a – xsalt = 0.299, b – xsalt = 0.143, c – xsalt = 0.221 – points of maximum, minimum and average salinity of water-salt fluid in samples E6, E5, K8.

Download (105KB)
10. Fig. 9. Relative presence of gas inclusions (CO2 and CH4) and brines (H2O, salts taking into account the mass % of salts) in quartz in the studied rock types: (a) type-1, (b) type-2, (c) type-3, (d) type-4, (e) type-5.

Download (96KB)
11. Fig. 10. Inclusions in type-2 rocks. Gray circles are the water-salt compositions of the studied fluid inclusions in samples E3 (a) and E5, E6, K8 (b). Colored symbols are the compositions of the fluids of the initial inclusions and the corresponding compositions of the layered fluids. The points corresponding to the compositions of the fluids of the initial inclusions are additionally marked with a + sign of the same color. Compositions of the model fluids of the initial inclusions (y are the mole fractions of the components in the quaternary system H2O-NaCl-CaCl2-CO2), P-T parameters at which phase separation occurred: 1. yH2O = 0.719, yCO2 = 0.197, yNaCl = 0.049, yCaCl2 = 0.035, T = 320°C, P = 2 kbar; 2. yH2O = 0.712, yCO2 = 0.205, yNaCl = 0.043, yCaCl2 = 0.040, T = 320°C, P = 2 kbar; 3. yH2O = 0.736, yCO2 = 0.184, yNaCl = 0.038, yCaCl2 = 0.042, T = 320°C, P = 2 kbar; 4. yH2O = 0.653, yCO2 = 0.237, yNaCl = 0.090, yCaCl2 = 0.020, T = 500°C, P = 4 kbar; 5. yH2O = 0.614, yCO2 = 0.222, yNaCl = 0.140, yCaCl2 = 0.024, T = 500°C, P = 4.3 kbar; 6. yH2O = 0.522, yCO2 = 0.391, yNaCl = 0.072, yCaCl2 = 0.016, T = 470°C, P = 2 kbar.

Download (151KB)
12. Fig. 11. Inclusions in type-4 rocks. Composition of the model fluid of the original inclusion: yH2O = 0.734, yCO2 = 0.211, yNaCl = 0.028, yCaCl2 = 0.028. T = 390°C, P = 1.4 kbar. See also the caption to Fig. 10.

Download (75KB)
13. Fig. 12. Phase diagrams of fluids along the generalized P-T trend of retrograde change in the formation conditions of the studied types of metamorphic and metasomatic rocks of the Bol'shiye Keivy nappe. (a) – type-1, (b) – type-2, (c) – type-3, (d) – type-4, (e) – dashed red line – generalized P-T trend. Bold blue lines – solvuses. For phase field designations, see the caption to Fig. 8. Unfilled circles are critical points of solvuses, at which water activity reaches the maximum value possible in the region of heterogeneous fluid. Red circles are maximum mole fractions of salt in the water-salt part of the fluid for each of the rock types. The dotted red line in Figure (a) is the solvus for P-T conditions of type-2 rocks. aH2O is the water activity, ρ is the density of fluid phases (g/cm3).

Download (322KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies