Metamorphosed ultramafic and mafic lithoclasts and detrital minerals from sandstones of clastic ophiolitic deposits of the Rassokha terrane: a setting of formation of the Chersky range ophiolites

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Ophiolite-derived clastic rocks of the Rassokha terrane in the Chersky Range of the Verkhoyansk−Kolyma folded area were studied to obtain representative characteristics of the eroded source metamorphosed ultramafic and mafic rocks, to gain an insight into the possible geodynamic setting in which the protoliths of these rocks were formed, and to identify the possible source of the eroded material. The composition of lithoclasts and detrital minerals of the serpentinite and listwanite sandstones suggests that their source was composed of serpentinite, chloritite, listwanite, and dolomite rocks and that this source was proximal. Prior to the source erosion, the ultramafic and mafic rocks were metamorphosed and recrystallized, listwanite was formed, and the ultramafic rocks were tectonically disintegrated and combined with units of carbonate rocks (dolomite). Ultramafic rocks from lithoclasts experienced allochemical metamorphic retrogression during at least the latest stage of their serpentinization in a nonoceanic setting, where also the listwanite was formed. The Late Neoproterozoic ophiolites of the collisional belt of the Chersky Range were the most probable source for the protoliths of the clastic material. The protoliths of the ophiolite rock were probably formed in a backarc setting. Considered together with the published ages, our data indicate that relics of suprasubduction oceanic lithosphere of the Neoproterozoic basin occurred in the Chersky Range.

Full Text

Restricted Access

About the authors

G. V. Ledneva

Geological Institute, RAS

Author for correspondence.
Email: ledneva@ginras.ru
Russian Federation, Moscow

B. A. Bazylev

V.I. Vernadsky Institute of geochemistry and analytical chemistry, RAS

Email: ledneva@ginras.ru
Russian Federation, Moscow

S. N. Sychev

Geological Institute, RAS; St. Petersburg State University; A.P. Karpinsky Russian Geological Research Institute

Email: ledneva@ginras.ru

Institute of Earth Sciences

Russian Federation, Moscow; St. Petersburg; St. Petersburg

A. V. Rogov

Gold Mining LLC

Email: ledneva@ginras.ru
Russian Federation, Yakutsk

References

  1. Базылев Б.А. Аллохимический метаморфизм мантийных перидотитов из зоны разлома Хэйс, Северная Атлантика // Петрология. 1997. Т. 5. № 4. С. 362–379.
  2. Базылев Б.А. Развитие аваруитсодержащей минеральной ассоциации в перидотитах из зоны разлома 15°20' (Атлантический океан) как одно из проявлений океанического метаморфизма // Российский журнал наук о Земле. 2000. Т. 2. № 3/4. C. 279–293.
  3. Базылев Б.А., Портнягин М.В., Савельев Д.П. и др. Признаки формирования плутонических пород офиолитов Камчатского мыса (Восточная Камчатка, Россия) в обстановках океанического и надсубдукционного магматизма // Петрология. 2023. Т. 31. № 3. С. 1–21.
  4. Ганелин А.В., Соколов С.Д., Шпикерман В.И. и др. Новые данные о возрасте Калгынского офиолитового массива коллизионного пояса Черского (Северо-Восток Азии): результаты U-Th-Pb (SIMS)-геохронологических исследований // Докл. АН. Науки о Земле. 2022. Т. 506. № 2. С. 20‒25.
  5. Карякин Ю.В., Оксман В.С., Третьяков Ф.Ф. Калгынский офиолитовый комплекс Селеняхского кряжа (Северо-Восток России): структура и минералого-петрохимический состав // Бюлл. МОИП. 2002. Т. 77. Вып. 6. С. 24–33.
  6. Кропачев А.П., Стрельников С.И., Киселев А.А., Федорова Н.П. Доордовикские офиолитокластиты Омулевского поднятия (Северо-Восток СССР) // Докл. АН СССР. 1987. Т. 292. № 4. С. 941–944.
  7. Лейер П., Парфенов Л.М., Сурнин А.А., Тимофеев В.Ф. Первые 40Ar/39Ar определения возраста магматических и метаморфических пород Верхояно-Колымских мезозоид // Докл. АН СССР. 1993. Т. 329. № 5. С. 621–624.
  8. Маланин Ю.А., Громов Г.С., Шпикерман В.И. и др. Государственная геологическая карта Российской Федерации масштаба 1 : 1 000 000. Третье поколение. Серия Верхояно-Колымская. Лист Q-55 – р. Мома. Объяснительная записка / Минприроды России, Роснедра, ФГБУ “ВСЕГЕИ”, ГУП “Сахагеоинформ”. СПб.: Изд-во ВСЕГЕИ, 2021. 615 с.
  9. Оксман В.С. Тектоника коллизионного пояса Черского (Северо-Восток Азии). М.: ГЕОС, 2000. 269 с.
  10. Парфенов Л.М., Натапов Л.М., Соколов С.Д., Цуканов Н.В. Террейны и аккреционная тектоника Северо-Востока Азии // Геотектоника. 1993. № 1. С. 68–78.
  11. Парфенов Л.М., Оксман В.С., Прокопьев А.В. и др. Коллаж террейнов Верхояно-Колымской орогенной области // Тектоника, геодинамика и металлогения территории республики Саха (Якутия). М.: МАИК “Наука/Интерпериодика”, 2001. С. 199–255.
  12. Парфенов Л.М., Берзин Н.А., Ханчук А.И. и др. Модель формирования орогенных поясов Центральной и Северо-Восточной Азии // Тихоокеанская геология. 2003. Т. 22. № 6. С. 7–41.
  13. Пущаровский Ю.М., Пейве А.А., Разницин Ю.Н. и др. Разлом Зеленого Мыса: вещественный состав пород и структуры (Центральная Атлантика) // Геотектоника. 1988. № 6. C. 18–31.
  14. Рогов А.В., Сычев С.Н. Первые данные структурно-кинематического анализа пород Рассохинской зоны и ее обрамления (Омулевское поднятие, Восточная Якутия) // Вестник СПбГУ. Науки о Земле. 2019. Т. 64. Вып. 1. С. 65–80.
  15. Савельева Г.Н. Габбро-ультрабазитовые комплексы офиолитов Урала и их аналоги в современной океанической коре // Тр. ГИН. Вып. 404. 1987. 246 с.
  16. Силантьев С.А., Мироненко М.В., Новоселов А.А. Гидротермальные системы в перидотитовом субстрате медленно-спрединговых хребтов. Моделирование фазовых превращений и баланса вещества: нисходящая ветвь // Петрология. 2009. Т. 17. № 2. С. 154–174.
  17. Силантьев С.А., Новоселов А.А. Краснова Е.А. и др. Окварцевание перидотитов разломной зоны Стелмейт (северо-запад Тихого океана): реконструкция условий низкотемпературного выветривания и их тектоническая интерпретация // Петрология. 2012. Т. 20. № 1. С. 25–44.
  18. Соболев А.В., Дмитриев Л.В., Цамерян О.П. и др. О структуре и происхождении геохимической аномалии в базальтах 2-го слоя между 12° и 18° с. ш. Срединно-Атлантического хребта // Докл. АН. 1992. Т. 326. С. 541–546.
  19. Соколов С.Д. Очерк тектоники Северо-Востока Азии // Геотектоника. 2010. № 6. С. 60–78.
  20. Сычев С.Н., Лебедева О.Ю., Рогов А.В. Государственная геологическая карта Российской Федерации м-ба 1 : 200000. Серия Яно-Индигирская. Листы Q-55-XXIX, XXX (Устье р. Булкут). Под ред. С.Д. Соколова. Изд.2-е. СПб.: ВСЕГЕИ, 2021.
  21. Сычев С.Н., Худолей А.К., Лебедева О.Ю. и др. Тектоническая эволюция и источники сноса нижнепалеозойских терригенных пород Омулевского и Рассохинского террейнов (Северо-Восток России) // Геотектоника. 2022. № 5. С. 3–26.
  22. Шпикерман В.И., Мерзляков В.М. О базальных слоях палеозойского разреза Омулевского поднятия // Стратиграфия и палеонтология фанерозоя Северо-Востока СССР. Магадан: СВКНИИ ДВНЦ АН СССР, 1988. С. 5–27.
  23. Abe N. Petrology of podiform chromitite from the ocean floor at the 15°20′ N FZ in the MAR, site 1217, ODP leg 209 // J. Mineral. Petrol. Sci. 2011. V. 106. P. 97–102.
  24. Anovitz L.M., Essene E.J. Phase equilibria in the system CaCO3–MgCO3–FeCO3 // J. Petrol. 1987. V. 28. P. 389–415.
  25. Arai S. Chemistry of chromian spinel in volcanic rocks as a potential guide to magma chemistry // Mineral. Mag. 1992. V. 56. P. 173–184.
  26. Arai S. Characterization of spinel peridotites by olivine-spinel compositional relationships: Review and interpretation // Chem. Geol. 1994. V. 113. P. 191–204.
  27. Arai S., Matsukage K. Petrology of the gabbro–troctolite–peridotite complex from Hess Deep, equatorial Pacific: implications for mantle–melt interaction within the oceanic lithosphere // Proc. ODP: Sci. Res. 147. Eds. C. Mevel, K. Gillis, J.F. Allan, P.S. Meyers et al. Ocean Drilling Program, College Station, TX, 1996. P. 135–155.
  28. Arai S., Okada Y. Petrology of serpentine sandstone as a key to tectonic development of serpentine belts // Tectonophysics. 1991. V. 195. P. 65–81.
  29. Arai S., Kadoshima K., Morishita T. Widespread arc-related melting in the mantle section of the northern Oman ophiolite as inferred from detrital chromian spinels // J. Geol. Soc. 2006. V. 163. P. 869–879.
  30. Bach W., Rosner M., Jöns N. et al. Carbonate veins trace seawater circulation during exhumation and uplift of mantle rock: Results from ODP Leg 209 // Earth Planet. Sci. Lett. 2011. V. 311. P. 242–252.
  31. Barnes S.J. Chromite in komatiites, II. Modification during greenschist to mid-amphibolite facies metamorphism // J. Petrol. 2000. V. 41. P. 387–409.
  32. Barnes S.J., Roeder P.L. The range of spinel compositions in terrestrial mafic and ultramafic rocks // J. Petrol. 2001. P. 42. P. 2279–2302.
  33. Baxter A.T., Aitchison J.C., Ali J.R. et al. Detrital chrome spinel evidence for a Neotethyan intra-oceanic island arc collision with India in the Paleocene // J. Asian Earth Sci. 2016. V. 128 P. 90–104.
  34. Bhatta K., Ghost B. Chromian spinel-rich black sands from eastern shoreline of Andaman Island, India: Implication for source characteristics // J. Earth Syst. Sci. 2014. V. 123. № 6. P. 1387–1397.
  35. Boskabadi B.A., Pitcairn I.K., Broman C. et al. Carbonate alteration of ophiolitic rocks in the Arabian–Nubian Shield of Egypt: sources and compositions of the carbonating fluid and implications for the formation of Au deposits // Int. Geol. Rev. 2016. V. 59. № 4. P. 391–419.
  36. Dick H.B., Bullen T. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas // Contrib. Mineral. Petrol. 1984. V. 86. Is. 1. P. 54–76.
  37. Evans B.W. The serpentinite multisystem revisited: Chrysotile is metastable // Int. Geol. Rev. 2004. V. 46. № 6. P. 479–506.
  38. Evans B.W., Frost B.R. Chrome-spinel in progressive metamorphism – a preliminary analysis // Geochim. Cosmochim. Acta. 1975. V. 39. P. 959–972.
  39. Evans B.W., Dyar M.D., Kuehner S.M. Implications of ferrous and ferric iron in antigorite // Amer. Mineral. 2012. V. 97. P. 184–196.
  40. Ferenc Š., Uher P., Spišiak J., Šimonová V. Chromium- and nickel-rich micas and associated minerals in listvenite from the Muránska Zdychava, Slovakia: products of hydrothermal metasomatic transformation of ultrabasic rock // J. Geosci. 2016. V. 61. P. 239–254.
  41. Gahlan H.A., Azer M.K., Asimow P.D, Al-Kahtany K.M. Petrogenesis of gold-bearing listvenites from the carbonatized mantle section of the Neoproterozoic Ess ophiolite, Western Arabian Shield, Saudi Arabia // Lithos. 2020. V. 12. 105679.
  42. Godard M., Carter E.J., Decrausaz T. et al. Geochemical profiles across the listvenite-metamorphic transition in the basal megathrust of the Semail ophiolite: Results from drilling at OmanDP Hole BT1B // J. Geophys. Res. Solid Earth. 2021. V. 126. Is. 12. Article e2021JB022733.
  43. Halls C., Zhao R. Listvenite and related rocks: Perspectives on terminology and mineralogy with reference to an occurrence at Cregganbaun, Co. Mayo, Republic of Ireland // Mineral. Deposita. 1995. V. 30. № 3–4. P. 303–313.
  44. Hellebrand E., Snow J.E., Dick H.J.B., Hofmann A. Coupled major and trace elements as indicators of the extend of melting in mid-ocean ridge peridotites // Nature. 2001. V. 410. P. 677–681.
  45. Hisada K., Arai S. Detrital chrome spinels in the Cretaceous Sanchu sandstone, central Japan: indicator of serpentinite protrusion into a fore-arc region // Palaeogeogr. Palaeoclimatol. Palaeoecol. I993. V. 105. P. 95–109.
  46. Ishii T., Robinson P.T., Maekawa H., Fiske R. Petrological studies of peridotites from diapiric serpentinite seamounts in the Izu-Ogasawara-Mariana Forearc, Leg. 125 / // Proc. ODP: Sci. Res. Eds. P. Fryer, J.A. Pearce, L.B. Stokking. Ocean Drilling Program, College Station, TX, 1992. V. 125. P. 445–485.
  47. LeMée L., Girardeau J., Monnier C. Mantle segmentation along the Oman ophiolite fossil mid-ocean ridge // Nature. 2004. V. 432. P. 167–172.
  48. Lockwood J.P. Sedimentary and gravity-slide emplacement of serpentinite // Geol. Soc. Amer. Bull. 1971. V. 82. P. 919–936.
  49. McPhail D.C., Berman R.G., Greenwood H.J. Experimental and theoretical constraints on aluminum substitution in magnesian chlorite, and a thermodynamic model for H2O in magnesian cordierite // Can. Mineral. 1990. V. 28. P. 859–874.
  50. Mellini M., Trommsdorff V., Compagnoni R. Antigorite polysomatism: Behaviour during progressive metamorphism // Contrib. Mineral. Petrol. 1987. V. 97. P. 147–155.
  51. Mellini M., Rumori C., Viti C. Hydrothermally reset magmatic spinels in retrograde serpentinites: Formation of “ferritchromit” rims and chlorite aureoles // Contrib. Mineral. Petrol. 2005. V. 149. P. 266–275.
  52. Mével C. Serpentinization of abyssal peridotites at mid-ocean ridges // C.R. Geosci. 2003. V. 335. P. 825–852.
  53. Moll M., Paulick H., Suhr G., Bach W. Data report: Microprobe analyses of primary phases (olivine, pyroxene, and spinel) and alteration products (serpentine, iowaite, talc, magnetite, and sulfides) in Holes 1268A, 1272A, and 1274A // Proc. ODP, Sci. Res. Eds. P.B. Kelemen, E. Kikawa, D.J. Miller. Ocean Drilling Program, College Station, TX, 2007. V. 209. P. 1–13.
  54. Morishita T., Maeda J., Miyashita S. et al. Petrology of local concentration of chromian spinel in dunite from the low-spreading Southwest Indian Ridge // Eur. J. Mineral. 2007. V. 19. P. 871–882.
  55. Nakatani T., Nakamura M. Experimental constraints on the serpentinization rate of fore-arc peridotites: Implications for the upwelling condition of the slab-derived fluid // Geochem. Geophys. Geosyst. 2016. V. 17. P. 3393–3419.
  56. O’Hanley D.S. Serpentinites: Record of tectonic and petrolo- gic history. NY and Oxford: Oxford University Press, 1996. 277 p.
  57. Ohara Y., Stern R., Ishii T. et al. T. Peridotites from the Mariana trough: first look at the mantle beneath an active back-arc basin // Contrib. Mineral. Petrol. 2002. V. 143. P. 1–18.
  58. Oxman V.S., Parfenov L.M., Prokopiev A.V. et al. The Chersky Range ophiolite belt, Northeast Russia // J. Geol. 1995. V. 103. P. 539–556.
  59. Page P., Barnes S.J. Using trace elements in chromites to constrain the origin of podiform chromitites in the Thetford mines ophiolite, Quebec, Canada // Econ. Geol. 2009. V. 104. P. 997–1018.
  60. Patterson S.N., Lynn K.J., Prigent C., Warren J.M. High temperature hydrothermal alteration and amphibole formation in Gakkel Ridge abyssal peridotites // Lithos. 2021. V. 392. P. 434–438.
  61. Pearce J.A., Barker P.F., Edwards S.J. et al. Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, South Atlantic // Contrib. Mineral. Petrol. 2000. V. 139. P. 36–53.
  62. Pirnia T., Saccani E., Arai S. Spinel and plagioclase peridotites of the Nain ophiolite (Central Iran): Evidence for the incipient stage of oceanic basin formation // Lithos. 2018. V. 310–311. P. 1–19.
  63. Pober E., Faupl P. The chemistry of detrital chromian spinels and its implications for the geodynamic evolution of the Eastern Alps // Geol. Rundsch. 1988. V. 77. P. 641–670.
  64. Robinson P.T., Zhou, M.F., Malpas J., Bai W.J. Podiform chromitites: Their composition, origin and environment of formation // Episodes. 1997. V. 20. № 4. 247–252.
  65. Rollinson H., Adetunji J. Mantle podiform chromitites do not form beneath mid-ocean ridges: A case study from the Moho transition zone of the Oman ophiolite // Lithos. 2013. V. 177. P. 314–327.
  66. Rollinson H., Adetunji J. The geochemistry and oxidation state of podiform chromitites from the mantle section of the Oman ophiolite: а review // Gondwana Res. 2015. V. 27. P. 543–554.
  67. Rouméjon S., Cannat M., Agrinier P. et al. Serpentinization and fluid pathways in tectonically exhumed peridotites from the Southwest Indian Ridge (62°–65°E) // J. Petrol. 2015. V. 56. № 4. P. 703–734.
  68. Rouméjon S., Früh-Green G.L., Orcutt B.N., the IODP Expedition 357 Science Party. Alteration heterogeneities in peridotites exhumed on the southern wall of the Atlantis Massif (IODP Expedition 357) // J. Petrol. 2018. V. 59. P. 1329–1358.
  69. Rouméjon S., Andreani M., FrühGreen G.L. Antigorite crystallization during oceanic retrograde serpentinization of abyssal peridotites // Contrib. Mineral. Petrol. 2019. V. 174. Article 60.
  70. Schreyer W., Medenbach O., Abraham K. et al. Kulkeite, a new metamorphic mineral: Ordered 1:1 chlorite/talc mixed-layer // Contrib. Mineral. Petrol. 1982. V. 80. P. 103–109.
  71. Staddon L.G., Parkinson I.J., Cavosie A.J. et al. Detrital chromite from Jack Hills, Western Australia: Signatures of metamorphism and constraints on provenance // J. Petrol. 2021. V. 62. № 12. P. 1–30.
  72. Urann B.M., Dick H.J.B., Parnell-Turner R., Casey J.F. Recycled arc mantle recovered from the Mid-Atlantic Ridge // Nature Communications. 2020. V. 11. Article 3887.
  73. Veblen D.R. Microstructures and mixed layering in intergrown wonesite, chlorite, talc, biotite and kaolinite // Amer. Mineral. 1983. V. 68. P. 566–580.
  74. Veblen D.R., Buseck P.R. Serpentine minerals: Intergrowths and new combination structures // Science. 1979. V. 206. № 4425. P. 1398–1400.
  75. Wakabayashi J. Clastic sedimentary rocks and sedimentary mélanges: Potential naturally occurring asbestos occurrences (amphibole and serpentine) // Environ. Eng. Geosci. 2020. V. XXVI. № 1. P. 15–19.
  76. Warr L.N. IMA–CNMNC approved mineral symbols // Mineral. Mag. 2021. V. 85. P. 291–320.
  77. Warren J.M. Global variations in abyssal peridotite compositions // Lithos. 2016. V. 248. P. 193–219.
  78. Xiong Q., Henry H., Griffin W.L. et al. High- and low-Cr chromitite and dunite in a Tibetan ophiolite: evolution from mature subduction system to incipient forearc in the Neo-Tethyan Ocean // Contrib. Mineral. Petrol. 2017. V. 172. Article 45.
  79. Zimmerle W. The geotectonic significance of detrital brown spinel in sediments // Mitt. Geol. Palaeont. Inst. Univ. Hamburg. 1984. V. 56. P. 337–360.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Position of the ophiolite massifs of the Chersky Ridge and the study area on the tectonic zoning scheme of the Verkhoyansk-Kolyma folded region (Parfenov et al., 2001), modified according to (Sokolov et al., 2010) and simplifications. 1 - Verkhoyansk fold-and-thrust belt; terranes: 2 - passive continental margin; 3 - cratonic (Omolon); 4 - island-arc; 5 - turbidite; 6 - turbidite foot of the continental margin (shale belt); 7 - accretionary wedge, composed mainly of oceanic sediments; 8 - accretionary wedge, mainly turbidite (Polousno-Debinsky); 9 – ophiolite massifs, including the Munilkan terrane: MUY – Uyandinsky (Kalgynsky), MMU – Munilkansky, MKY – Kabytygassky, MIN – Indigirsky (Uchchinsky), MGA – Garbynyinsky, MUV – Uvyazkinsky; 10 – thrusts; 11 – strike-slip faults; 12 – faults. OVR – Rassokhinsky and adjacent Omulevsky (OVO) and Arga-Tassky (AG) terranes.

Download (702KB)
3. Fig. 2. Rocks of the ophiolite-clastic sequence from the Rassokha River basin: (a) alternation of layers and lenses of dolomite rocks (light beige) with serpentinite siltstones (dark greenish-gray); (b) grayish-green serpentinite sandstones and gravelstones with rubble and small pebbles of differently colored dolomite rocks; (c) interlayer of boulder-pebble conglomerates in serpentinite sandstone, pebbles and boulders are composed of dolomite rocks; (d) listvenite sandstone with pinkish pebbles of dolomite rocks.

Download (919KB)
4. Fig. 3. Serpentinite sandstone (sample 1099/4) (a, b) and listvenite sandstone (sample 1099/1) (c, d). (a) – in transmitted light; (b) – in polarized light; (c, d) – in secondary scattered electrons (BSE). Fragments in (a, b): 1 – serpentinites, 2 – chloritites, 3 – dolomite rocks, 4 – chrome spinels and magnetites. Fragments in (c, d) and other figures: Ds – dolomite rocks, List – listvenites. The analyzed lithoclasts (here and in other figures) are numbered (see Suppl. 2, ESM_1.xls).

Download (1MB)
5. Fig. 4. Post-sedimentary recrystallization in sandstones. BSE images: (a–c) development of euhedral magnetite in clasts and in the matrix of serpentinite sandstones; (d) rim of ferrodolomite at the contact of a dolomite clast with the matrix of serpentinite sandstone; (e) ferrodolomite cementing small dolomite clasts in listvenite sandstone; (e) recrystallization of dolomite in isolated areas and at the contact with albite, dolomite clast in listvenite sandstone. Abbreviations of minerals here and below are according to (Warr, 2021), mineral generations (here and in other figures) are characterized in the text. The analyzed grains of chrome spinels (here and in other figures) are numbered (see Suppl. 2, ESM_2.xls).

Download (1MB)
6. Fig. 5. Grains of chrome spinels in serpentinite sandstones.

Download (1MB)
7. Fig. 6. Compositions of restitic and chromitite chrome spinels from sandstones: (a) primary (all studied samples); (b–d) primary, partially recrystallized, and metamorphic in individual samples. Generations of chrome spinels: 1 – primary restitic (Spl1res), 2 – primary chromitite (Spl1chr-te); 3 – partially recrystallized (Spl2), 4 – partially recrystallized, specific for listvenites (Spl2a); 5 – metamorphic (Spl3); 6 – chrome spinels from harzburgites of the Munilkan massif (Oxman, 2000); Fields of compositions of primary chrome-spinels from: 7 – restitic peridotites of the MOR (Dick, Bullen, 1994), 8 – harzburgites of fore-arc basins (Ishii et al., 1992), 9 – harzburgites of Oman ophiolites (LeMée et al., 2004), 10 – chromitites of Oman ophiolite massifs (Rollinson, Adetunji, 2013, 2015). Solid and dotted arrows show typical trends in the composition of spinels during partial and complete recrystallization, respectively.

Download (350KB)
8. Fig. 7. Compositions of silicates from fragments of serpentinites and chloritites. 1 – chlorites (Chl1, Chl4); 2 – chlorites (Chl2, Chl3); 3 – chlorites (Chl5); 4 – talc; 5 – talc-chlorite; 6 – serpentines (lizardite and antigorite); 7 – Fe-lizardites; 8 – talc + serpentine(?); 9 – serpentine + chlorite(?). Lz, Atg, Tlc, Chl (unfilled diamonds) – ideal compositions of minerals; for chlorites, the number of Si atoms in the formula is given in brackets when recalculated to 18O. Solid lines limit the field of talc-chlorite compositions.

Download (148KB)
9. Fig. 8. Compositions of serpentines: 1 – antigorites, 2 – lizardites, 3 – Fe-lizardites.

Download (120KB)
10. Fig. 9. Fragments in serpentinite sandstone, sample 1099/4; BSE (a–g, e) and in polarized light (d). (a) serpentinite fragment of indeterminate structure; (b) serpentinite fragment with pseudo-loop structure; (c) serpentinite fragments with different structures; (d–f) serpentinite fragment with signs of pseudomorphic replacement of primary silicates.

Download (1MB)
11. Fig. 10. Chloritite fragments and their individual grains in serpentinite sandstones; BSE. (a–c) massive fragments, (d) schistose fragment, (d) ilmenite grain with local magnetite overgrowth rim, (e) rounded titaniferous magnetite grain with lamellae of silicate minerals, (g) apatite grain.

Download (1MB)
12. Fig. 11. Compositions of chlorites: 1 – high-alumina magnesian chlorites (Chl1), 2 – low-alumina magnesian chlorites (high-chromium) (Chl2), 3 – low-alumina magnesian chlorites (low-chromium) (Chl3), 4 – moderate-magnesian chlorites (Chl4), 5 – ferrous chlorites (Chl5).

Download (75KB)
13. Fig. 12. Rock fragments and detrital minerals in listvenite sandstone (sample 1099/1). (a–c) rounded listvenite fragments with ferrodolomite rims, (d) different generations of chrome-spinel in a grain with a fuchsite framing, (d) a grain of chrome-spinel with a fuchsite pseudomorph by an euhedral inclusion of primary silicate, (e) an aggregate of millerite and polydymite in cement, (g) rutile segregations in replaced ilmenite, (h) grains of zircon, metamorphic chrome-spinel, and fuchsite (Fuch) in cement.

Download (1MB)
14. Fig. 13. Dolomite compositions: 1, 2 – serpentinite sandstones: 1 – central areas of dolomite fragments (Dol1), 2 – rims of fragments, small grains in the matrix, inclusions in magnetite (Dol2); 3–5 – listvenite sandstones: 3 – central areas of dolomite fragments (Dol3), 4 – listvenites (Dol4), 5 – rims around listvenite fragments, recrystallized areas of dolomite rock fragments, veinlets in cement and in dolomite rock fragments (Dol5).

Download (85KB)
15. Fig. 14. Compositions of metamorphic chrome spinels. Sample 1099/1 is a listvenite sandstone, the other samples are serpentinite sandstones. The line connects the compositions measured in one grain.

Download (77KB)
16. Supplementary 1: Geological, tectonic position and age of the ophiolithoclastite sequence
Download (729KB)
17. Supplementary 2: ESM_1.xls – Mineral associations and lithoclast sizes; ESM_2.xls – Average compositions of chrome spinels; ESM_3.xls – Compositions of serpentines, chlorites, and talc; ESM_4.xls – Compositions of micas (fuchsites); ESM_5.xls – Compositions of carbonates; ESM_6.xls – Average compositions of accessory minerals; ESM_7.xls – Compositions of sulfides.
Download (481KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies