Обломки метаморфизованных ультрамафитов и мафитов и детритовые минералы из песчаников офиолитокластитовой толщи Рассохинского террейна: обстановка формирования офиолитов хр. Черского
- Авторы: Леднева Г.В.1, Базылев Б.А.2, Сычев С.Н.1,3,4, Рогов А.В.5
-
Учреждения:
- Геологический институт РАН
- Институт геохимии и аналитической химии им. В.И. Вернадского РАН
- Санкт-Петербургский государственный университет
- Всероссийский геологический институт им. А. П. Карпинского
- ООО “Голд Майнинг”
- Выпуск: Том 32, № 3 (2024)
- Страницы: 383-412
- Раздел: Статьи
- URL: https://journals.rcsi.science/0869-5903/article/view/261492
- DOI: https://doi.org/10.31857/S0869590324030062
- EDN: https://elibrary.ru/DAKBAH
- ID: 261492
Цитировать
Аннотация
Проведено исследование песчаников из офиолитокластитовой толщи Рассохинского террейна хр. Черского, Верхояно-Колымская складчатая область, направленное на получение представительной вещественной характеристики подвергавшихся размыву пород, реконструкцию вероятной геодинамической обстановки формирования их протолитов, а также определение вероятного источника сноса. Состав обломков пород и детритовых минералов в изученных песчаниках (серпентинитовых и лиственитовых) позволяет предполагать, что в источнике сноса обломочного материала присутствовали серпентиниты, хлорититы, листвениты и доломитовые породы, при этом источники сноса находились вблизи места накопления офиолитокластитовой толщи. Размыву пород в источнике сноса предшествовали процессы метаморфической перекристаллизации ультрамафитов и мафитов, формирование лиственитов, тектоническая дезинтеграция офиолитов и тектоническое совмещение ультрамафитов офиолитовой ассоциации с толщами карбонатных (доломитовых) пород. Метаморфизм ультрамафитов из обломков песчаников был ретроградным, имел неизохимичный характер и происходил, по крайней мере, на последнем этапе при их серпентинизации, не в океанической обстановке, как и формирование лиственитов. Вероятным источником обломков метаморфизованных основных и ультраосновных пород, а также детритовых минералов из них, были дезинтегрированные фрагменты неопротерозойских офиолитовых массивов коллизионного пояса хр. Черского. Проведенное исследование позволяет предполагать формирование протолитов пород офиолитов хр. Черского в обстановке задугового спрединга, что в совокупности с опубликованными возрастными оценками свидетельствует о присутствии в коллизионном поясе хр. Черского фрагментов литосферы неопротерозойского задугового бассейна.
Полный текст

Об авторах
Г. В. Леднева
Геологический институт РАН
Автор, ответственный за переписку.
Email: ledneva@ginras.ru
Россия, Москва
Б. А. Базылев
Институт геохимии и аналитической химии им. В.И. Вернадского РАН
Email: ledneva@ginras.ru
Россия, Москва
С. Н. Сычев
Геологический институт РАН; Санкт-Петербургский государственный университет; Всероссийский геологический институт им. А. П. Карпинского
Email: ledneva@ginras.ru
Институт наук о Земле
Россия, Москва; Санкт-Петербург; Санкт-ПетербургА. В. Рогов
ООО “Голд Майнинг”
Email: ledneva@ginras.ru
Россия, Якутск
Список литературы
- Базылев Б.А. Аллохимический метаморфизм мантийных перидотитов из зоны разлома Хэйс, Северная Атлантика // Петрология. 1997. Т. 5. № 4. С. 362–379.
- Базылев Б.А. Развитие аваруитсодержащей минеральной ассоциации в перидотитах из зоны разлома 15°20' (Атлантический океан) как одно из проявлений океанического метаморфизма // Российский журнал наук о Земле. 2000. Т. 2. № 3/4. C. 279–293.
- Базылев Б.А., Портнягин М.В., Савельев Д.П. и др. Признаки формирования плутонических пород офиолитов Камчатского мыса (Восточная Камчатка, Россия) в обстановках океанического и надсубдукционного магматизма // Петрология. 2023. Т. 31. № 3. С. 1–21.
- Ганелин А.В., Соколов С.Д., Шпикерман В.И. и др. Новые данные о возрасте Калгынского офиолитового массива коллизионного пояса Черского (Северо-Восток Азии): результаты U-Th-Pb (SIMS)-геохронологических исследований // Докл. АН. Науки о Земле. 2022. Т. 506. № 2. С. 20‒25.
- Карякин Ю.В., Оксман В.С., Третьяков Ф.Ф. Калгынский офиолитовый комплекс Селеняхского кряжа (Северо-Восток России): структура и минералого-петрохимический состав // Бюлл. МОИП. 2002. Т. 77. Вып. 6. С. 24–33.
- Кропачев А.П., Стрельников С.И., Киселев А.А., Федорова Н.П. Доордовикские офиолитокластиты Омулевского поднятия (Северо-Восток СССР) // Докл. АН СССР. 1987. Т. 292. № 4. С. 941–944.
- Лейер П., Парфенов Л.М., Сурнин А.А., Тимофеев В.Ф. Первые 40Ar/39Ar определения возраста магматических и метаморфических пород Верхояно-Колымских мезозоид // Докл. АН СССР. 1993. Т. 329. № 5. С. 621–624.
- Маланин Ю.А., Громов Г.С., Шпикерман В.И. и др. Государственная геологическая карта Российской Федерации масштаба 1 : 1 000 000. Третье поколение. Серия Верхояно-Колымская. Лист Q-55 – р. Мома. Объяснительная записка / Минприроды России, Роснедра, ФГБУ “ВСЕГЕИ”, ГУП “Сахагеоинформ”. СПб.: Изд-во ВСЕГЕИ, 2021. 615 с.
- Оксман В.С. Тектоника коллизионного пояса Черского (Северо-Восток Азии). М.: ГЕОС, 2000. 269 с.
- Парфенов Л.М., Натапов Л.М., Соколов С.Д., Цуканов Н.В. Террейны и аккреционная тектоника Северо-Востока Азии // Геотектоника. 1993. № 1. С. 68–78.
- Парфенов Л.М., Оксман В.С., Прокопьев А.В. и др. Коллаж террейнов Верхояно-Колымской орогенной области // Тектоника, геодинамика и металлогения территории республики Саха (Якутия). М.: МАИК “Наука/Интерпериодика”, 2001. С. 199–255.
- Парфенов Л.М., Берзин Н.А., Ханчук А.И. и др. Модель формирования орогенных поясов Центральной и Северо-Восточной Азии // Тихоокеанская геология. 2003. Т. 22. № 6. С. 7–41.
- Пущаровский Ю.М., Пейве А.А., Разницин Ю.Н. и др. Разлом Зеленого Мыса: вещественный состав пород и структуры (Центральная Атлантика) // Геотектоника. 1988. № 6. C. 18–31.
- Рогов А.В., Сычев С.Н. Первые данные структурно-кинематического анализа пород Рассохинской зоны и ее обрамления (Омулевское поднятие, Восточная Якутия) // Вестник СПбГУ. Науки о Земле. 2019. Т. 64. Вып. 1. С. 65–80.
- Савельева Г.Н. Габбро-ультрабазитовые комплексы офиолитов Урала и их аналоги в современной океанической коре // Тр. ГИН. Вып. 404. 1987. 246 с.
- Силантьев С.А., Мироненко М.В., Новоселов А.А. Гидротермальные системы в перидотитовом субстрате медленно-спрединговых хребтов. Моделирование фазовых превращений и баланса вещества: нисходящая ветвь // Петрология. 2009. Т. 17. № 2. С. 154–174.
- Силантьев С.А., Новоселов А.А. Краснова Е.А. и др. Окварцевание перидотитов разломной зоны Стелмейт (северо-запад Тихого океана): реконструкция условий низкотемпературного выветривания и их тектоническая интерпретация // Петрология. 2012. Т. 20. № 1. С. 25–44.
- Соболев А.В., Дмитриев Л.В., Цамерян О.П. и др. О структуре и происхождении геохимической аномалии в базальтах 2-го слоя между 12° и 18° с. ш. Срединно-Атлантического хребта // Докл. АН. 1992. Т. 326. С. 541–546.
- Соколов С.Д. Очерк тектоники Северо-Востока Азии // Геотектоника. 2010. № 6. С. 60–78.
- Сычев С.Н., Лебедева О.Ю., Рогов А.В. Государственная геологическая карта Российской Федерации м-ба 1 : 200000. Серия Яно-Индигирская. Листы Q-55-XXIX, XXX (Устье р. Булкут). Под ред. С.Д. Соколова. Изд.2-е. СПб.: ВСЕГЕИ, 2021.
- Сычев С.Н., Худолей А.К., Лебедева О.Ю. и др. Тектоническая эволюция и источники сноса нижнепалеозойских терригенных пород Омулевского и Рассохинского террейнов (Северо-Восток России) // Геотектоника. 2022. № 5. С. 3–26.
- Шпикерман В.И., Мерзляков В.М. О базальных слоях палеозойского разреза Омулевского поднятия // Стратиграфия и палеонтология фанерозоя Северо-Востока СССР. Магадан: СВКНИИ ДВНЦ АН СССР, 1988. С. 5–27.
- Abe N. Petrology of podiform chromitite from the ocean floor at the 15°20′ N FZ in the MAR, site 1217, ODP leg 209 // J. Mineral. Petrol. Sci. 2011. V. 106. P. 97–102.
- Anovitz L.M., Essene E.J. Phase equilibria in the system CaCO3–MgCO3–FeCO3 // J. Petrol. 1987. V. 28. P. 389–415.
- Arai S. Chemistry of chromian spinel in volcanic rocks as a potential guide to magma chemistry // Mineral. Mag. 1992. V. 56. P. 173–184.
- Arai S. Characterization of spinel peridotites by olivine-spinel compositional relationships: Review and interpretation // Chem. Geol. 1994. V. 113. P. 191–204.
- Arai S., Matsukage K. Petrology of the gabbro–troctolite–peridotite complex from Hess Deep, equatorial Pacific: implications for mantle–melt interaction within the oceanic lithosphere // Proc. ODP: Sci. Res. 147. Eds. C. Mevel, K. Gillis, J.F. Allan, P.S. Meyers et al. Ocean Drilling Program, College Station, TX, 1996. P. 135–155.
- Arai S., Okada Y. Petrology of serpentine sandstone as a key to tectonic development of serpentine belts // Tectonophysics. 1991. V. 195. P. 65–81.
- Arai S., Kadoshima K., Morishita T. Widespread arc-related melting in the mantle section of the northern Oman ophiolite as inferred from detrital chromian spinels // J. Geol. Soc. 2006. V. 163. P. 869–879.
- Bach W., Rosner M., Jöns N. et al. Carbonate veins trace seawater circulation during exhumation and uplift of mantle rock: Results from ODP Leg 209 // Earth Planet. Sci. Lett. 2011. V. 311. P. 242–252.
- Barnes S.J. Chromite in komatiites, II. Modification during greenschist to mid-amphibolite facies metamorphism // J. Petrol. 2000. V. 41. P. 387–409.
- Barnes S.J., Roeder P.L. The range of spinel compositions in terrestrial mafic and ultramafic rocks // J. Petrol. 2001. P. 42. P. 2279–2302.
- Baxter A.T., Aitchison J.C., Ali J.R. et al. Detrital chrome spinel evidence for a Neotethyan intra-oceanic island arc collision with India in the Paleocene // J. Asian Earth Sci. 2016. V. 128 P. 90–104.
- Bhatta K., Ghost B. Chromian spinel-rich black sands from eastern shoreline of Andaman Island, India: Implication for source characteristics // J. Earth Syst. Sci. 2014. V. 123. № 6. P. 1387–1397.
- Boskabadi B.A., Pitcairn I.K., Broman C. et al. Carbonate alteration of ophiolitic rocks in the Arabian–Nubian Shield of Egypt: sources and compositions of the carbonating fluid and implications for the formation of Au deposits // Int. Geol. Rev. 2016. V. 59. № 4. P. 391–419.
- Dick H.B., Bullen T. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas // Contrib. Mineral. Petrol. 1984. V. 86. Is. 1. P. 54–76.
- Evans B.W. The serpentinite multisystem revisited: Chrysotile is metastable // Int. Geol. Rev. 2004. V. 46. № 6. P. 479–506.
- Evans B.W., Frost B.R. Chrome-spinel in progressive metamorphism – a preliminary analysis // Geochim. Cosmochim. Acta. 1975. V. 39. P. 959–972.
- Evans B.W., Dyar M.D., Kuehner S.M. Implications of ferrous and ferric iron in antigorite // Amer. Mineral. 2012. V. 97. P. 184–196.
- Ferenc Š., Uher P., Spišiak J., Šimonová V. Chromium- and nickel-rich micas and associated minerals in listvenite from the Muránska Zdychava, Slovakia: products of hydrothermal metasomatic transformation of ultrabasic rock // J. Geosci. 2016. V. 61. P. 239–254.
- Gahlan H.A., Azer M.K., Asimow P.D, Al-Kahtany K.M. Petrogenesis of gold-bearing listvenites from the carbonatized mantle section of the Neoproterozoic Ess ophiolite, Western Arabian Shield, Saudi Arabia // Lithos. 2020. V. 12. 105679.
- Godard M., Carter E.J., Decrausaz T. et al. Geochemical profiles across the listvenite-metamorphic transition in the basal megathrust of the Semail ophiolite: Results from drilling at OmanDP Hole BT1B // J. Geophys. Res. Solid Earth. 2021. V. 126. Is. 12. Article e2021JB022733.
- Halls C., Zhao R. Listvenite and related rocks: Perspectives on terminology and mineralogy with reference to an occurrence at Cregganbaun, Co. Mayo, Republic of Ireland // Mineral. Deposita. 1995. V. 30. № 3–4. P. 303–313.
- Hellebrand E., Snow J.E., Dick H.J.B., Hofmann A. Coupled major and trace elements as indicators of the extend of melting in mid-ocean ridge peridotites // Nature. 2001. V. 410. P. 677–681.
- Hisada K., Arai S. Detrital chrome spinels in the Cretaceous Sanchu sandstone, central Japan: indicator of serpentinite protrusion into a fore-arc region // Palaeogeogr. Palaeoclimatol. Palaeoecol. I993. V. 105. P. 95–109.
- Ishii T., Robinson P.T., Maekawa H., Fiske R. Petrological studies of peridotites from diapiric serpentinite seamounts in the Izu-Ogasawara-Mariana Forearc, Leg. 125 / // Proc. ODP: Sci. Res. Eds. P. Fryer, J.A. Pearce, L.B. Stokking. Ocean Drilling Program, College Station, TX, 1992. V. 125. P. 445–485.
- LeMée L., Girardeau J., Monnier C. Mantle segmentation along the Oman ophiolite fossil mid-ocean ridge // Nature. 2004. V. 432. P. 167–172.
- Lockwood J.P. Sedimentary and gravity-slide emplacement of serpentinite // Geol. Soc. Amer. Bull. 1971. V. 82. P. 919–936.
- McPhail D.C., Berman R.G., Greenwood H.J. Experimental and theoretical constraints on aluminum substitution in magnesian chlorite, and a thermodynamic model for H2O in magnesian cordierite // Can. Mineral. 1990. V. 28. P. 859–874.
- Mellini M., Trommsdorff V., Compagnoni R. Antigorite polysomatism: Behaviour during progressive metamorphism // Contrib. Mineral. Petrol. 1987. V. 97. P. 147–155.
- Mellini M., Rumori C., Viti C. Hydrothermally reset magmatic spinels in retrograde serpentinites: Formation of “ferritchromit” rims and chlorite aureoles // Contrib. Mineral. Petrol. 2005. V. 149. P. 266–275.
- Mével C. Serpentinization of abyssal peridotites at mid-ocean ridges // C.R. Geosci. 2003. V. 335. P. 825–852.
- Moll M., Paulick H., Suhr G., Bach W. Data report: Microprobe analyses of primary phases (olivine, pyroxene, and spinel) and alteration products (serpentine, iowaite, talc, magnetite, and sulfides) in Holes 1268A, 1272A, and 1274A // Proc. ODP, Sci. Res. Eds. P.B. Kelemen, E. Kikawa, D.J. Miller. Ocean Drilling Program, College Station, TX, 2007. V. 209. P. 1–13.
- Morishita T., Maeda J., Miyashita S. et al. Petrology of local concentration of chromian spinel in dunite from the low-spreading Southwest Indian Ridge // Eur. J. Mineral. 2007. V. 19. P. 871–882.
- Nakatani T., Nakamura M. Experimental constraints on the serpentinization rate of fore-arc peridotites: Implications for the upwelling condition of the slab-derived fluid // Geochem. Geophys. Geosyst. 2016. V. 17. P. 3393–3419.
- O’Hanley D.S. Serpentinites: Record of tectonic and petrolo- gic history. NY and Oxford: Oxford University Press, 1996. 277 p.
- Ohara Y., Stern R., Ishii T. et al. T. Peridotites from the Mariana trough: first look at the mantle beneath an active back-arc basin // Contrib. Mineral. Petrol. 2002. V. 143. P. 1–18.
- Oxman V.S., Parfenov L.M., Prokopiev A.V. et al. The Chersky Range ophiolite belt, Northeast Russia // J. Geol. 1995. V. 103. P. 539–556.
- Page P., Barnes S.J. Using trace elements in chromites to constrain the origin of podiform chromitites in the Thetford mines ophiolite, Quebec, Canada // Econ. Geol. 2009. V. 104. P. 997–1018.
- Patterson S.N., Lynn K.J., Prigent C., Warren J.M. High temperature hydrothermal alteration and amphibole formation in Gakkel Ridge abyssal peridotites // Lithos. 2021. V. 392. P. 434–438.
- Pearce J.A., Barker P.F., Edwards S.J. et al. Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, South Atlantic // Contrib. Mineral. Petrol. 2000. V. 139. P. 36–53.
- Pirnia T., Saccani E., Arai S. Spinel and plagioclase peridotites of the Nain ophiolite (Central Iran): Evidence for the incipient stage of oceanic basin formation // Lithos. 2018. V. 310–311. P. 1–19.
- Pober E., Faupl P. The chemistry of detrital chromian spinels and its implications for the geodynamic evolution of the Eastern Alps // Geol. Rundsch. 1988. V. 77. P. 641–670.
- Robinson P.T., Zhou, M.F., Malpas J., Bai W.J. Podiform chromitites: Their composition, origin and environment of formation // Episodes. 1997. V. 20. № 4. 247–252.
- Rollinson H., Adetunji J. Mantle podiform chromitites do not form beneath mid-ocean ridges: A case study from the Moho transition zone of the Oman ophiolite // Lithos. 2013. V. 177. P. 314–327.
- Rollinson H., Adetunji J. The geochemistry and oxidation state of podiform chromitites from the mantle section of the Oman ophiolite: а review // Gondwana Res. 2015. V. 27. P. 543–554.
- Rouméjon S., Cannat M., Agrinier P. et al. Serpentinization and fluid pathways in tectonically exhumed peridotites from the Southwest Indian Ridge (62°–65°E) // J. Petrol. 2015. V. 56. № 4. P. 703–734.
- Rouméjon S., Früh-Green G.L., Orcutt B.N., the IODP Expedition 357 Science Party. Alteration heterogeneities in peridotites exhumed on the southern wall of the Atlantis Massif (IODP Expedition 357) // J. Petrol. 2018. V. 59. P. 1329–1358.
- Rouméjon S., Andreani M., FrühGreen G.L. Antigorite crystallization during oceanic retrograde serpentinization of abyssal peridotites // Contrib. Mineral. Petrol. 2019. V. 174. Article 60.
- Schreyer W., Medenbach O., Abraham K. et al. Kulkeite, a new metamorphic mineral: Ordered 1:1 chlorite/talc mixed-layer // Contrib. Mineral. Petrol. 1982. V. 80. P. 103–109.
- Staddon L.G., Parkinson I.J., Cavosie A.J. et al. Detrital chromite from Jack Hills, Western Australia: Signatures of metamorphism and constraints on provenance // J. Petrol. 2021. V. 62. № 12. P. 1–30.
- Urann B.M., Dick H.J.B., Parnell-Turner R., Casey J.F. Recycled arc mantle recovered from the Mid-Atlantic Ridge // Nature Communications. 2020. V. 11. Article 3887.
- Veblen D.R. Microstructures and mixed layering in intergrown wonesite, chlorite, talc, biotite and kaolinite // Amer. Mineral. 1983. V. 68. P. 566–580.
- Veblen D.R., Buseck P.R. Serpentine minerals: Intergrowths and new combination structures // Science. 1979. V. 206. № 4425. P. 1398–1400.
- Wakabayashi J. Clastic sedimentary rocks and sedimentary mélanges: Potential naturally occurring asbestos occurrences (amphibole and serpentine) // Environ. Eng. Geosci. 2020. V. XXVI. № 1. P. 15–19.
- Warr L.N. IMA–CNMNC approved mineral symbols // Mineral. Mag. 2021. V. 85. P. 291–320.
- Warren J.M. Global variations in abyssal peridotite compositions // Lithos. 2016. V. 248. P. 193–219.
- Xiong Q., Henry H., Griffin W.L. et al. High- and low-Cr chromitite and dunite in a Tibetan ophiolite: evolution from mature subduction system to incipient forearc in the Neo-Tethyan Ocean // Contrib. Mineral. Petrol. 2017. V. 172. Article 45.
- Zimmerle W. The geotectonic significance of detrital brown spinel in sediments // Mitt. Geol. Palaeont. Inst. Univ. Hamburg. 1984. V. 56. P. 337–360.
Дополнительные файлы
