Metasomatism in the Precambrian Crust of the Siberian Craton: Results of a Study of Garnet(±orthopyroxene)-biotite-feldspar Xenolith Rocks From Yubileinaya and Sytykanskaya Kimberlite Pipes, Yakutia

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Xenoliths in kimberlites are the most perspective objects for studying the composition and structure of the lower levels of the continental crust. Present work is aimed at estimation of P-T fluid conditions of metamorphism for garnet-biotite-feldspar and orthopyroxene-garnet-biotite-feldspar rocks represented as xenoliths in kimberlites of the Yubileynaya and Sytykanskaya pipes, Yakutian kimberlite province. Seven studied samples show inverse dependences of relative contents of garnet and orthopyroxene, orthopyroxene and biotite, garnet and plagioclase, plagioclase and potassium feldspar. This indicates a consistent series of transformations of the assemblage garnet + plagioclase + orthopyroxene ± quartz to the assemblage garnet + biotite + potassium feldspar. In this process, the replacement of plagioclase by potassium feldspar was the leading reaction. Now it is represented by specific reaction textures in the rocks, negative correlations of the mineral contents, as well as in petrochemical characteristics of the rocks. Modeling of xenolith mineral assemblages using the pseudosection approach (PERPLE_X) revealed two groups of rocks corresponding to different depth levels of the Siberian cratonic crust. For rocks where orthopyroxene is absent or is present as single relics, pressure estimates are 9.5–10 kbar, and it is 6–7 kbar for orthopyroxene-bearing samples. The xenolith rocks have close metamorphic peak temperatures of 750–800°C. They experienced 200–250°C cooling and 3–4 kbar decompression, regardless of the level of the crust at which they were initially located. This points to the metamorphic evolution of the rocks during their exhumation, probably associated with collisional processes during the amalgamation of individual terrains of the Siberian craton. Xenoliths enriched in K-feldspar might have been products of metamorphic reactions with participation of aqueous-(carbonic)-salt fluids, which were sourced from basaltic magmas in the lower crust. The most metasomatized rocks were located closest to the place of accumulation of crystallizing magmas.

Full Text

Restricted Access

About the authors

N. E. Seliutina

Korzhinskii Institute of Experimental Mineralogy RAS

Author for correspondence.
Email: seliutinane@gmail.com
Russian Federation, Chernogolovka, Moscow region

O. G. Safonov

Korzhinskii Institute of Experimental Mineralogy RAS; Lomonosov Moscow State University, Department of Geology; Department of Geology, University of Johannesburg PO Box 524

Email: seliutinane@gmail.com

Department of Geology

Russian Federation, Chernogolovka, Moscow region; Moscow; Johannesburg, South Africa

V. O. Yapaskurt

Lomonosov Moscow State University, Department of Geology

Email: seliutinane@gmail.com

геологический факультет

Russian Federation, Moscow

D. A. Varlamov

Korzhinskii Institute of Experimental Mineralogy RAS

Email: seliutinane@gmail.com

геологический факультет

Russian Federation, Chernogolovka, Moscow region

I. S. Sharygin

Institute of the Earth’s Crust SB RAS

Email: seliutinane@gmail.com
Russian Federation, Irkutsk

K. M. Konstantinov

Institute of the Earth’s Crust SB RAS; Irkutsk National Research Technical University

Email: seliutinane@gmail.com

Siberian School of Geosciences

Russian Federation, Irkutsk; Irkutsk

V. M. Kozlovskiy

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry RAS

Email: seliutinane@gmail.com
Russian Federation, Moscow

References

  1. Бузлукова Л.В., Шацкий В.С., Соболев Н.В. Оcобенности строения низов коры в районе кимберлитовой трубки Загадочная (Якутия) // Геология и геофизика. 2004. Т. 45. № 8. С. 992–1007.
  2. Перчук Л.Л., Геря Т.В., Корсман К. Модель чарнокитизации гнейсовых комплексов // Петрология. 1994. Т. 2. № 5. С. 451–480.
  3. Предовский А.А. Геохимическая реконструкция первичного состава метаморфизованных вулканогенно-осадочных образований докембрия. Апатиты: ГИ КНЦ РАН, 1970. 115 с.
  4. Розен О.М., Журавлев Д.З., Суханов М.К. и др. Изотопно-геохимические и возрастные характеристики раннепротерозойских террейнов, коллизионных зон и связанных с ними анортозитов на cеверо-востоке Сибирского кратона // Геология и геофизика. 2000. Т. 41. № 2. С. 163–180.
  5. Сафонов О.Г., Косова С.А. Флюидно-минеральные реакции и плавление ортопироксен-кордиерит-биотитового гнейса в присутствии флюидов H2O- CO2-NaCl и H2O- CO2-KCl в условиях гранулитового метаморфизма // Петрология. 2017. Т. 25. № 5. С. 461–490.
  6. Сафонов О.Г., Бутвина В.Г., Лиманов Е.В. и др. Минеральные индикаторы реакций с участием солевых компонентов флюидов в глубокой литосфере // Петрология. 2019. Т. 27. № 5. С. 525–556.
  7. Шацкий В.С., Бузлукова Л.В., Ягоутц Э. и др. Строение и эволюция нижней коры Далдын-Алакитского района Якутской алмазоносной провинции (по данным изучения ксенолитов) // Геология и геофизика. 2005. Т. 46. № 12. С. 1273–1289.
  8. Aranovich L.Y., Berman R.G. A new garnet-orthopyroxene thermometer based on reversed Al2O3 solubility in FeO-Al2O3-SiO2 orthopyroxene // Amer. Mineral. 1997. V. 82. P. 345–353.
  9. Aranovich L.Y., Safonov O.G. Halogens in high-grade metamorphism // Eds. D.E. Harlov, L.Y. Aranovich. The role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes. Cham: Springer, 2018. Ch. 11. P. 713–757.
  10. Aranovich L.Y., Newton R.C., Manning C.E. Brine-assisted anatexis: еxperimental melting in the system haplogranite–H2O–NaCl–KCl at deep-crustal conditions // Earth Planet. Sci. Lett. 2013. V. 374. P. 111–120.
  11. Bohlen S.R., Mezger K. Origin of granulite terranes and the formation of the lowermost continental crust // Science. 1989. V. 244. P. 326–329.
  12. Carson C.J., Powell R. Garnet-orthopyroxene geothermometry and geobarometry: error propagation and equilibration effects // J. Metamorph. Geol. 1997. V. 15. P. 679–686.
  13. Cherepanova Y., Artemieva I.M., Thybo H. et al. Crustal structure of the Siberian craton and the West Siberian basin: an appraisal of existing seismic data // Tectonophysics. 2013. V. 609. P. 154–183.
  14. Condie K.C., Wilks M., Rosen O.M. et al. Geochemistry of metasediments from the Precambrian Hapschan series, eastern Anabar Shield, Siberia // Precamb. Res. 1991. V. 50. P. 37–47.
  15. Connolly J.A.D. Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation // Earth Planet. Sci. Lett. 2005. V. 236. P. 524–541.
  16. Dawson J.B., Harley S.L., Rudnick R.L. et al. Equilibration and reaction in Archaean quartz‐sapphirine granulite xenoliths from the Lace kimberlite pipe, South Africa // J. Metamorph. Geol. 1997. V. 15. P. 253–266.
  17. Donskaya T.V. Assembly of the Siberian Craton: constraints from Paleoproterozoic granitoids // Precamb. Res. 2020. V. 348. 105869.
  18. Elkins L.T., Grove T.L. Ternary feldspar experiments and thermodynamic models // Amer. Mineral. 1990. V. 75. P. 544–559.
  19. Gerya T.V. Precambrian geodynamics: concepts and models // Gondwana Res. 2014. V. 25. P. 442–463.
  20. Gruber B., Chacko T., Pearson D.G. et al. Heat production and Moho temperatures in cratonic crust: evidence from crustal xenoliths from the Slave craton // Lithos. 2021. V. 380–381. 105889.
  21. Fitzsimons I.C.W., Harley S.L. The influence of retrograde cation exchange on granulite P-T estimates and a convergence technique for the recovery of peak metamorphic conditions // J. Petrol. 1994. V. 35. P. 543–576.
  22. Fu B., Page F., Cavosie A.J. et al. Ti-in-zircon thermometry: applications and limitations // Contrib. Mineral. Petrol. 2008. V. 156. P. 197–215.
  23. Harley S.L. The origins of granulites: a metamorphic perspective // Geol. Mag. 1989. V. 126. P. 215–247.
  24. Holdaway M.J. Application of new experimental and garnet Margules data to the garnet-biotite geothermometer // Amer. Mineral. 2000. V. 85. P. 881–892.
  25. Holland T.J.B., Powell R. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids // J. Metamorph. Geol. 2011. V. 29. P. 333–383.
  26. Kay R.W., Kay S.M. The nature of the lower continental crust: inferences from geophysics, surface geology, and crustal xenoliths // Rev. Geophys. 1981. V. 19. P. 271–297.
  27. Koreshkova M.Y., Downes H. The age of the lower crust of the central part of the Columbia supercontinent: а review of zircon data // Gondwana Res. 2021. V. 96. P. 37–55.
  28. Koreshkova M.Y., Downes H., Nikitina L.P. et al. Trace element and age characteristics of zircons in granulite xenoliths from the Udachnaya kimberlite pipe, Siberia // Precamb. Res. 2009. V. 168. P. 197–212.
  29. Koreshkova M.Y., Downes H., Levsky L.K. et al. Petrology and geochemistry of granulite xenoliths from Udachnaya and Komsomolskaya kimberlite pipes, Siberia // J. Petrol. 2011. V. 52. P. 1857–1885.
  30. Kravchinsky V.A., Konstantinov K.M., Courtillot V. et al. Paleomagnetism of East Siberian traps and kimberlites: two newpoles and paleogeographic reconstructions at about 360 and 250 Ma // Geophys. J. Int. 2002. V. 48. P. 1–33.
  31. Li X., Zhang C., Behrens H. et al. Calculating biotite formula from electron microprobe analysis data using a machine learning method based on principal components regression // Lithos. 2020. V. 356. 105371.
  32. McDonough W.F., Sun S.S. The composition of the Earth // Chem. Geol. 1995. V. 120. P. 223–253.
  33. Montanini A., Harlov D. Petrology and mineralogy of granulite-facies mafic xenoliths (Sardinia, Italy): еvidence for KCl metasomatism in the lower crust // Lithos. 2006. V. 92. P. 588–608.
  34. Moyen J.F., Paquette J.L., Ionov D.A. et al. Paleoproterozoic rejuvenation and replacement of Archaean lithosphere: еvidence from zircon U-Pb dating and Hf isotopes in crustal xenoliths at Udachnaya, Siberian craton // Earth Planet. Sci. Lett. 2017. V. 457. P. 149–159.
  35. Nozhkin A.D., Turkina O.M., Sal’Nikova E.B. et al. Charnockites of the central part of the Anabar shield: distribution, petrogeochemical composition, age, and formation conditions // Geochem. Intern. 2022. V. 60. P. 711–723.
  36. Paquette J.L., Ionov D.A., Agashev A.M. et al. Age, provenance and Precambrian evolution of the Anabar shield from U-Pb and Lu-Hf isotope data on detrital zircons, and the history of the northern and central Siberian craton // Precamb. Res. 2017. V. 301. P. 134–144.
  37. Pattison D.R.M., Bégin N.J. Zoning patterns in orthopyroxene and garnet in granulites: implications for geothermometry // J. Metamorph. Geol. 1994. V. 12. P. 387–410.
  38. Pattison D.R.M., Chacko T., Farquhar J. et al. Temperatures of granulite-facies metamorphism: constraints from experimental phase equilibria and thermobarometry corrected for retrograde exchange // J. Petrol. 2003. V. 44. P. 867–900.
  39. Pearson N.J., O’Reilly S.Y. Thermobarometry and P-T-t paths: the granulite to eclogite transition in lower crustal xenoliths from eastern Australia // J. Metamorph. Geol. 1991. V. 9. P. 349–359.
  40. Pearson N.J., O’Reilly S.Y., Griffin W.L. The crust-mantle boundary beneath cratons and craton margins: a transect across the south-west margin of the Kaapvaal craton // Lithos. 1995. V. 36. P. 257–287.
  41. Perchuk L.L., Gerya T.V. Fluid control of charnockitization // Chem. Geol. 1993. V. 108. V. 175–186.
  42. Perchuk A.L., Sapegina A.V., Safonov O.G. et al. Reduced amphibolite facies conditions in the Precambrian continental crust of the Siberian craton recorded by mafic granulite xenoliths from the Udachnaya kimberlite pipe, Yakutia // Precamb. Res. 2021. V. 357. 106122.
  43. Pisarevsky S.A., Natapov L.M., Donskaya T.V. et al. Proterozoic Siberia: a promontory of Rodinia // Precamb. Res. 2008. V. 160. P. 66–76.
  44. Putnis A., Austrheim H. Mechanism of metasomatism and metamorphism on the local mineral scale: the role of dissolution-precipitation during mineral re-equilibration // Eds. D.E. Harlov, H. Austrheim. Metasomatism and the Chemical Transformation of Rock. The Role of Fluids in Terrestrial and Extraterrestrial Processes. Berlin Heidelberg: Springer, 2013. P. 141–170.
  45. Rosen O.M., Condie K.C., Natapov L.M. et al. Archean and Early Proterozoic evolution of the Siberian craton: a preliminary assessment // Archean Crustal evolution. Еd. К.С. Condie. Elsevier. Developments Precamb. Geol. 1994. V. 11. P. 411–459.
  46. Rosen O.M., Levskii L.K., Zhuravlev D.Z. et al. Paleoproterozoic accretion in the Northeast Siberian craton: isotopic dating of the Anabar collision system // Stratigraph. Geol. Correl. 2006. V. 14. P. 581–601.
  47. Rudnick R.L. Xenoliths – samples of the lower continental crust // Continental lower crust. Еds. D.M. Fountain, R.J. Arculus, R.W. Kay. 1992. V. 23. P. 269–316.
  48. Rudnick R.L., Fountain D.M. Nature and composition of the continental crust: a lower crustal perspective // Rev. Geophys. 1995. V. 33. P. 267–309.
  49. Rudnick R.L., Taylor S.R. The composition and petrogenesis of the lower crust: a xenolith study // J. Geophys. Res. Solid Earth. 1987. V. 92. P. 13981–14005.
  50. Safonov O.G., Aranovich L.Y. Alkali control of high-grade metamorphism and granitization // Geosci. Front. 2014. V. 5. P. 711–727.
  51. Safonov O.G., Kosova S.A., van Reenen D.D. Interaction of biotite-amphibole gneiss with H2O-CO2-(K, Na)Cl fluids at 550 MPa and 750 and 800°C: еxperimental study and applications to dehydration and partial melting in the middle crust // J. Petrol. 2014. V. 55. P. 2419–2456.
  52. Schmitz M.D., Bowring S.A. Utrahigh-temperature metamorphism in the lower crust during Neoarchean Ventersdorp rifting and magmatism, Kaapvaal Craton, southern Africa // GSA Bull. 2003. V. 115. P. 533–548.
  53. Shatsky V.S., Malkovets V.G., Belousova E.A. et al. Tectonothermal evolution of the continental crust beneath the Yakutian diamondiferous province (Siberian craton): U-Pb and Hf isotopic evidence on zircons from crustal xenoliths of kimberlite pipes // Precamb. Res. 2016. V. 282. P. 1–20.
  54. Shatsky V.S., Malkovets V.G., Belousova E.A. et al. Multi-stage modification of Paleoarchean crust beneath the Anabar tectonic province (Siberian craton) // Precamb. Res. 2018. V. 305. P. 125–144.
  55. Shatsky V.S., Wang Q., Skuzovatov S.Y. et al. The crust-mantle evolution of the Anabar tectonic province in the Siberian Craton: Coupled or decoupled? // Precamb. Res. 2019. V. 332. 105388.
  56. Shatsky V.S., Ragozin A.L., Wang Q. et al. Evidence of Eoarchean crust beneath the Yakutian kimberlite province in the Siberian craton // Precamb. Res. 2022. V. 369. 106512.
  57. Smelov A.P., Timofeev V.F. The age of the North Asian Cratonic basement: an overview // Gondwana Res. 2007. V. 12. P. 279–288.
  58. Sukhorukov V.P., Turkina O.M. The P-T path of metamorphism and age of migmatites from the northwestern Irkut block (Sharyzhalgai uplift of the Siberian Platform) // Russ. Geol. Geophy. 2018. V. 59. P. 673–689.
  59. Sukhorukov V.P., Savel’eva V.B., Jiang Y. et al. P-T path of metamorphism and U-Pb monazite and zircon age of the Kitoy terrane: implication for Neoarchean collision in SW Siberian Craton // Geosci. Front. 2020. V. 11. P. 1915–1934.
  60. Sun J., Liu C.Z., Tappe S. et al. Repeated kimberlite magmatism beneath Yakutia and its relationship to Siberian flood volcanism: insights from in situ U-Pb and Sr-Nd perovskite isotope analysis // Earth Planet. Sci. Lett. 2014. V. 404. P. 283–295.
  61. Suvorov V.D., Melnik E.A., Thybo H. et al. Seismic velocity model of the crust and uppermost mantle around the Mirnyi kimberlite field in Siberia // Tectonophysics. 2006. V. 420. P. 49–73.
  62. Taylor S.R., McLennan S.M. The continental crust: its composition and evolution. Oxford, London, Edinburgh, Boston, Palo Alto, Melbourne: Blackwell Scientific, 1985. 312 p.
  63. Tretiakova I.G., Belousova E.A., Malkovets V.G. et al. Recurrent magmatic activity on a lithosphere-scale structure: сrystallization and deformation in kimberlitic zircons // Gondwana Res. 2017. V. 42. P. 126–132.
  64. Turkina O.M., Sukhorukov V.P. Early Precambrian high-grade metamorphosed terrigenous rocks of granulite-gneiss terranes of the Sharyzhalgai uplift (southwestern Siberian craton) // Russ. Geol. Geophy. 2015. V. 55. P. 874–884.
  65. Turkina O.M., Berezhnaya N.G., Lepekhina E.N. et al. U-Pb (SHRIMP II), Lu-Hf isotope and trace element geochemistry of zircons from high-grade metamorphic rocks of the Irkut terrane, Sharyzhalgai Uplift: implications for the Neoarchaean evolution of the Siberian Craton // Gondwana Res. 2012. V. 21. P. 801–817.
  66. Werner C.D. Saxonian granulites – a contribution to the geochemical diagnosis of original rocks in high metamorphic complexes // Gerlands Beitraege zur Geophysik. 1987. V. 96. P. 271–290.
  67. White R.W., Powell R., Holland T.J. B. et al. New mineral activity–composition relations for thermodynamic calculations in metapelitic systems // J. Metamorph. Geol. 2014. V. 32. P. 261–286.
  68. Whitney D.L., Evans B.W. Abbreviations for names of rock-forming minerals // Amer. Mineral. 2010. V. 95. P. 185–187.
  69. Wones D.R., Eugster H.P. Stability of biotite: experiment, theory, and application // Amer. Mineral. 1965. V. 50. P. 1228–1272.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1

Download (558KB)
3. Fig.2

Download (465KB)
4. Fig.3

Download (2MB)
5. Fig.4

Download (1MB)
6. Fig.5

Download (555KB)
7. Fig.6

Download (106KB)
8. Fig.7

Download (325KB)
9. Fig.8

Download (517KB)
10. Fig.9

Download (283KB)
11. Fig.10

Download (4MB)
12. Fig.11

Download (500KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies