Antibiotic resistance genes in pathogens of open cavities

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The work is devoted to the study of the phenotypic and genotypic resistance to antibiotics of bacteria that cause diseases of open cavities of farm animals – mastitis and colibacteriosis. A high prevalence of antibiotic resistance genes of bacteria has been established, both in the gut of piglets and in the causative agents of cow mastitis. It is noteworthy that 38% of the identified genes in the gut microbiota were beta-lactam antibiotic resistance genes. It has been shown that all bacteria E. coli of piglets’ gut turned out to be phenotypically multiresistant. More than 88% of the causative agents of mastitis in cows were characterized by resistance to benzylpenicillin, ampicillin, lincomycin and polymyxin. At the same time, 19 varieties of antibiotic resistance genes have been identified in the causative agents of mastitis.

The study of phenotypic resistance to antibiotics and the genome of pathogens of farm animals did not reveal stable correlations between them. It is necessary to conduct further active research in the field of circulation of resistance genes in livestock farms for the safety of livestock.

全文:

受限制的访问

作者简介

S. Shabunin

All-Russian Veterinary Research Institute of Pathology, Pharmacology and Therapy

编辑信件的主要联系方式.
Email: vnivipat@mail.ru

академик РАН, научный руководитель ВНИВИПФиТ

俄罗斯联邦, Voronezh

G. Vostroilova

All-Russian Veterinary Research Institute of Pathology, Pharmacology and Therapy

Email: gvostroilova@mail.ru

доктор биологических наук, заведующая лабораторией доклинических исследований и моделирования биологических систем ВНИВИПФиТ

俄罗斯联邦, Voronezh

D. Shabanov

All-Russian Veterinary Research Institute of Pathology, Pharmacology and Therapy

Email: am7d@mail.ru

научный сотрудник лаборатории доклинических исследований и моделирования биологических систем ВНИВИПФиТ

俄罗斯联邦, Voronezh

I. Burakova

Voronezh State University of Engineering Technologies

Email: vitkalovai@inbox.ru

младший научный сотрудник ВГУИТ

俄罗斯联邦, Voronezh

Yu. Smirnova

Voronezh State University of Engineering Technologies

Email: dyd16@mail.ru

младший научный сотрудник ВГУИТ

俄罗斯联邦, Voronezh

M. Gryaznova

Voronezh State University of Engineering Technologies

Email: mariya-vg@mail.ru

младший научный сотрудник ВГУИТ

俄罗斯联邦, Voronezh

M. Syromyatnikov

All-Russian Veterinary Research Institute of Pathology, Pharmacology and Therapy; Voronezh State University of Engineering Technologies

Email: syromyatnikov@bio.vsu.ru

кандидат биологических наук, ведущий научный сотрудник ВГУИТ

俄罗斯联邦, Voronezh; Voronezh

参考

  1. Stacy A.S., Adam C.M. Gene amplification uncovers large previously unrecognized cryptic antibiotic resistance potential in E. coli // ASM J. Microbiol. Spectr. 2021. № 3. e0028921.
  2. Mouiche M.M.M., Moffo F., Akoachere J.T.K. et al. Antimicrobial resistance from a one health perspective in Cameroon: a systematic review and meta-analysis // BMC Public Health. 2019. № 1. 1135.
  3. Urban-Chmiel R., Marek A., Stępień-Pyśniak D. et al. Antibiotic resistance in bacteria // Antibiotics (Basel). 2022. № 8. 1079.
  4. Волкова С.В. Причины возникновения и распространения факторных инфекций и незаразных болезней // Современные наукоёмкие технологии. 2007. № 12. С. 67–70.
  5. Castro J., Barros M.M., Araújo D. et al. Swine enteric colibacillosis: Current treatment avenues and future directions // Front. Vet. Sci. 2022. V. 9. 981207.
  6. Arbab S., Ullah H., Wang W. et al. Isolation and identification of infection-causing bacteria in dairy animals and determination of their antibiogram // J. Food Qual. 2021. V. 2021. P. 1–9.
  7. Johnson J.R., Russo T.A. Molecular epidemiology of extraintestinal pathogenic Escherichia coli // EcoSal Plus. 2018. V. 8. ESP-0004–2017.
  8. El-Sayed A., Kamel M. Bovine mastitis prevention and control in the post-antibiotic era // Trop. Anim. Health. Prod. 2021. № 2. 236.
  9. Zadoks R.N., Middleton J.R., McDougall S. et al. Molecular epidemiology of mastitis pathogens of dairy cattle and comparative relevance to humans // J. Mammary. Gland. Biol. Neoplasia. 2011. V. 16. P. 357–372.
  10. Sharifi A., Sobhani K., Mahmoudi P. A systematic review and meta-analysis revealed a high-level antibiotic resistance of bovine mastitis Staphylococcus aureus in Iran // Res. Vet. Sci. 2023. V. 161. P. 23–30.
  11. Olsen E.J., Christensen H., Aarestrup F.M. Diversity and evolution of blaZ from Staphylococcus aureus and coagulase-negative staphylococci // J. Ant. Chemo. 2006. № 3. P. 450–460.
  12. Zhang P., Shen Z., Zhang C. et al. Surveillance of antimicrobial resistance among Escherichia coli from chicken and swine, China, 2008–2015 // Vet. Microbiol. 2017. V. 203. P. 49–55.
  13. Alegría Á., Arias-Temprano M., Fernández-Natal I. et al. Molecular diversity of ESBL-Producing Escherichia coli from foods of animal origin and human patients // Int. J. Environ. Res. Public. Health. 2020. № 4. 1312.
  14. Bourély C., Cazeau G., Jarrige N. et al. Co-resistance to amoxicillin and tetracycline as an indicator of multidrug resistance in Escherichia coli isolates from animals // Front. Microbiol. 2019. V. 10. 2288.
  15. Bengtsson B., Greko C. Antibiotic resistance-consequences for animal health, welfare, and food production // Ups. J. Med. Sci. 2014. № 2. P. 96–102.
  16. Мурленков Н.В. Проблемы и факторы развития антибиотикорезистентности в сельском хозяйстве // Биология в сельском хозяйстве. 2019. № 4. С. 11–14.
  17. Pang Z., Raudonis R., Glick B.R. et al. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies // Biotechnol. Adv. 2019. № 1. P. 177–192.
  18. Yuan W., Zhang Y., Riaz L. et al. Multiple antibiotic resistance and DNA methylation in Enterobacteriaceae isolates from different environments // J. Hazard. Mater. 2021. V. 402. 123822.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Phenotypic resistance of bacteria causing mastitis in cows

下载 (162KB)

版权所有 © Russian Academy of Sciences, 2024

##common.cookie##