Biodiversity of Ethiopian aquatic ecosystems

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

For 40 years, Russian scientists have investigated the biodiversity of the aquatic ecosystems of the Ethiopian Highlands (Ethiopia), a unique hydrological and hydrobiological region. The expeditions took place in all six main river basins of Ethiopia, which made it possible to describe the species composition and distribution of fish and other aquatic organisms. The discovery of the so-called “species flock” of cyprinid fish, consisting of 4–6 morphotypes, was outstanding. For representatives of these flocks (including the previously discovered flock of lakeTana). Information on the ecology of reproduction, development, age, growth, morphology, nutrition and genetics was obtained for the first time. Methods of artificial reproduction of a number of commercial fishes of Ethiopia have been developed. In addition, knowledge about aquatic crustaceans has been significantly expanded.

Толық мәтін

Рұқсат жабық

Авторлар туралы

A. Golubtsov

Ecology and Evolution of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: sgolubtsov@gmail.com

доктор биологических наук, заведующий лабораторией  

Ресей, Moscow

B. Levin

Ecology and Evolution of the Russian Academy of Sciences; Papanin Institute for biology of inland waters Academy of Sciences

Email: borislyovin@mail.ru

кандидат биологических наук, ведущий научный сотрудник 

Ресей, Moscow; Borok

A. Neretina

Ecology and Evolution of the Russian Academy of Sciences

Email: neretina-anna@yandex.ru

кандидат биологических наук, старший научный сотрудник 

Ресей, Moscow

A. Kotov

Ecology and Evolution of the Russian Academy of Sciences

Email: alexey-a-kotov@yandex.ru

член-корреспондент, главный научный сотрудник 

Ресей, Moscow

V. Mina

Koltzov Institute of Developmental Biology of Russian Academy of Sciences

Email: mvmina@bk.ru

доктор биологических наук, ведущий научный сотрудник 

Ресей, Moscow

Yu. Dgebuadze

Ecology and Evolution of the Russian Academy of Sciences; Lomonosov Moscow State University

Email: yudgeb@yandex.ru

академик, заведующий лабораторией, заведующий кафедрой общей экологии и гидробиологии биологического факультета

Ресей, Moscow; Moscow

Әдебиет тізімі

  1. Alekseev S.S. Distribution, diversity and diversification of Arctic charr Salvelinus alpinus (L.) complex (Salmoniformes, Salmonidae) of Siberia / Author’s abstract ... Dr. Biol. Sci. thesis. Мoscow, 2016. (In Russ.)
  2. Esin E.V., Bocharova E.S., Borisova E.A., Markevich G.N. Interaction among morphological, trophic and genetic groups in the rapidly radiating Salvelinus fishes from Lake Kronotskoe // Evol. Ecol. 2020, vol. 34, pp. 611–632.
  3. Kornfield I., Carpenter K.E. Cyprinids of Lake Lanao, Philippines: taxonomic validity, evolutionary rates and speciation scenario // Evolution of Fish Species Flocks. Orono, Maine: Univ. Maine Press,1984. Pp. 69–84.
  4. Dgebuadze Yu.Yu. Diversity of freshwater fish communities: conservation and utilsation examples from Ethiopia, Mongolia and Russia // Biological Diversity and Nature Conservation: Theory and Practice for Teaching. Moscow: KMK Scientific Press Ltd, 2010. Pp. 156–167.
  5. Nagelkerke L.A.J., Sibbing F.A., van den Boogaart J.G.M. et al. The barbs (Barbus spp.) of Lake Tana: a forgotten species flock? // Environ. Biol. Fish. 1994, vol. 39, pp. 1–21.
  6. Golubtsov A.S., Dgebuadze Yu.Yu., Mina M.V. Fishes of the Ethiopian Rift Valley // Ethiopian Rift Valley Lakes. Leiden, Holland: Backhuys Publishers, 2002. Pp. 167–258.
  7. Paugy D. The Ethiopian subregion fish fauna: an original patchwork with various origins // Hydrobiologia. 2010, vol. 649, pp. 301–315.
  8. Roberts T.R. Geographical distribution of African freshwater fishes // Zool. J. Linn. Soc. 1975, vol. 57, pp. 249–319.
  9. Tedla S. Freshwater fishes of Ethiopia. Addis Ababa, Ethiopia: Department of Biology, H.S.I.U., 1973.
  10. Vinciguerra D. Spedizione del Barone Raimondo Franchetti in Dancalia. Repttili, Batraci e Pesci // Ann. Mus. Civ. Stor. Natur. 1931, vol. 55, pp. 104–108.
  11. Nagelkerke L.A.J., Sibbing F.A. The large barbs (Barbus spp., Cyprinidae, Teleostei) of Lake Tana (Ethiopia), with a description of a new species, Barbus osseensis // Neth. J. Zool. 2000, vol. 50, pp. 179–214.
  12. Abebe Getahun, Lazara K.J.Lebias stiassnyae: a new species of killifish from Lake Afdera, Ethiopia (Teleostei: Cyprinodontidae) // Copeia. 2001, vol. 2001 (1), pp. 150–153.
  13. Stiassny M.L.J, Abebe Getahun. An overview of labeonin relationships and the phylogenetic placement of the Afro-Asian genus Garra Hamilton, 1822 (Teleostei: Cyprinidae), with the description of five new species of Garra from Ethiopia, and a key to all African species // Zool. J. Linn. Soc. 2007, vol. 150, pp. 41–83.
  14. Chiozzi G., Stiassny M.L.J, de Marchi G. et al. A diversified kettle of fish: phenotypic variation in the endemic cichlid genus Danakilia of the Danakil Depression of northeastern Africa // Biol. J. Linn. Soc. 2018, vol. 124, pp. 690–705.
  15. Englmaier G.K., Tesfaye G., Bogutskaya N.G. A new species of Enteromius (Actinopterygii, Cyprinidae, Smiliogastrinae) from the Awash River, Ethiopia, and the re-establishment of E. akakianus // ZooKeys. 2020, vol. 902, pp. 107–150.
  16. Prokofiev A.M. Problems of the classification and phylogeny of nemacheiline loaches of the group lacking the preethmoid I (Cypriniformes: Balitoridae: Nemacheilinae) // J. Ichthyol. 2009, vol. 49, pp. 874–898.
  17. Valdesalici S., Bellemans M., Kardashev R., Golubtsov A.Nothobranchius nubaensis (Cyprinodontiformes: Nothobranchiidae) a new annual killifish from Sudan and Ethiopia // Aqua, Int. J. Ichthyol. 2009, vol. 15, pp. 143–152.
  18. Prokofiev A.M., Golubtsov A.S. Revision of the loach genus Afronemacheilus (Teleostei: Balitoridae: Nemacheilinae) with description of a new species from the Omo-Turkana basin, Ethiopia // Ichthyol. Explor. Freshwat. 2013, vol. 24, pp. 1–14.
  19. Prokofiev A.M., Levin B.A., Golubtsov A.S. A new species of Enteromius from the Bale Mountain Region, southeastern Ethiopia (Teleostei: Cyprinidae) // Ichthyol. Explor. Freshwat. 2022, IEF-1161, pp. 1–19.
  20. Dagosta F., de Pinna M. The Fishes of the Amazon: Distribution and Biogeographical Patterns, with a Comprehensive List of Species // Bull. Amer. Mus. Nat. Hist. 2019, vol. 431, pp. 1–163.
  21. Nagelkerke L.A.J., Sibbing F.A. The large barbs (Barbus spp., Cyprinidae, Teleostei) of Lake Tana (Ethiopia), with a description of a new species, Barbus osseensis // Neth. J. Zool. 2000, vol. 50, pp.179–214.
  22. Golubtsov A.S. Fish species flocks in lakes and rivers: sympatric divergence in faunistically depauperated fish communities as particular mode of evolution // Current Topics of Modern Ichthyology (dedicated to the 100th anniversary of G.V. Nikolsky). Moscow: KMK Scientific Press, 2010. Pp. 96–123. (In Russ.)
  23. Levin B.A., Simonov E., Dgebuadze Y.Y. et al. In the rivers: Multiple adaptive radiations of cyprinid fishes (Labeobarbus) in Ethiopian Highlands // Sci. Rep. 2020, vol. 10, 7192.
  24. Golubtsov A.S., Cherenkov S.E., Fekadu Tefera. High morphological diversity of the genus Garra in the Sore River (the White Nile basin, Ethiopia): one more cyprinid species flock? // J. Ichthyol. 2012, vol. 52, pp. 817–820.
  25. Levin B., Simonov E., Franchini P. et al. A rapid adaptive radiation in a hillstream cyprinid fish in the East African White Nile River basin // Mol. Ecol. 2021a, vol. 30, pp. 5530–5550.
  26. Dgebuadze Yu.Yu., Chernova O.F. Scale Structure Variability of “Forms Flock” of Barbus (=Labeobarbus) intermedius and Varicorhinus jubae from the Genale River (Eastern Ethiopia) // J. Ichthyol. 2012, vol. 52, pp. 881–907.
  27. Golubtsov A.S., Moots K.A., Dzerjinskii K.F. Dentition in the African catfishes Andersonia (Amphiliidae) and Siluranodon (Schilbeidae) previously considered toothless // J. Fish. Biol. 2004, vol. 64, pp. 146–158.
  28. Golubtsov A.S., Dzerjinskii K.F., Prokofiev A.M. Four rows of pharyngeal teeth in an aberrant specimen of the small African barb Barbus paludinosus (Cyprinidae): novelty or atavistic alteration? // J. Fish. Biol. 2005, vol. 67, pp. 286–291.
  29. Golubtsov A.S., Korostelev N.B., Levin B.A. Monsters with a shortened vertebral column: A population phenomenon in radiating fish Labeobarbus (Cyprinidae) // PLoS ONE. 2021, vol. 16, e0239639.
  30. Mina M.V., Dgebuadze Yu.Yu., Mironovsky A.N. Morphometry of barbel of Lake Tana, Ethiopia: Multivariate ontogenetic channels in Lake Tana barbs // Fol. Zool. 1996, vol. 45, supp. 1, pp. 109–116.
  31. Mina M.V., Mironovsky A.M., Dgebuadze Yu.Yu. Lake Tana large barbs: phenetics, growth and diversification // J. Fish. Biol. 1996, vol. 48, pp. 383–404.
  32. Mina M.V., Mironovsky A.N., Golani D. Consequences and modes of morphological diversification of East African and Eurasian barbins (genera Barbus, Varicorhinus and Capoeta) with particular reference to Barbus intermedius complex // Environ. Biol. Fishes. 2001, vol. 61, pp. 241–252.
  33. Mina M.V., Shkil F.N., Dzerzhinskii K.F et al. Morphological diversity and age dependent transformations in progeny of the large Lake Tana barbs (Barbus intermedius complex) of several morphotypes. Results of a long time experiment // J. Ichthyol. 2012, vol. 52, pp. 821–837.
  34. Mina M.V., Dzerzhinskii K.F., Mironovsky A.N., Kapitanova D.V. Phenetic diversity of the large barbs (Barbus intermedius complex sensu Banister) from the coastal zone of the Bahar Dar Gulf (Lake Tana, Ethiopia) // J. Ichthyol. 2013, vol. 53, pp. 645–661.
  35. Mina M.V., Mironovsky A.Н., Dgebuadze Yu.Yu. Polymorphism of skull proportions in large African barbs Barbus intermedius sensu Banister (Cyprinidae) from Lakes Awasa and Langano (Rift Valley, Ethiopia) // J. Ichthyol. 2016, vol. 56, pp. 498–504.
  36. Shkil F.N., Smirnov S.V., Kapitanova D.V. Internal sources of infraorbital series and lateral line scale count variability in six Labeobarbus species composing the Lake Tana (Ethiopia) species flock // J. Appl. Ichthyol. 2018, vol. 34, pp. 465–471.
  37. Alekseyev S.S. The role of heterochrony in the formation of morphological differences of “large” and “small” African barbs (Barbus, Cyprinidae) (Russian-Ethiopian investigations of Ethiopian fauna) // J. Ichthyol. 1994, vol. 3, pp. 119–141.
  38. Smirnov S.V., Dzerzhinskii K.F., Levin B.A. On the relationship between scale number in the lateral line in the African barbel Barbus intermedius and the rate of ontogeny (by experimental data) // J. Ichthyol. 2006, vol. 46, pp. 129–132.
  39. Smirnov S.V., Borisov V.B., Kapitanova D.V. et al. Heterochronies in skull development of Lake Tana large African barbs (Labeobarbus; Cyprinidae; Teleostei) // J. Appl. Ichthyol. 2012, vol. 28, pp. 406–410.
  40. Smirnov S.V., Kapitanova D.V., Borisov V.B. et al. Lake Tana large barbs diversity: Developmental and hormonal bases // J. Ichthyol. 2012, vol. 52, pp. 861–880.
  41. Alekseyev S.S., Dgebuadze Y.Y., Mina M.V., Mironovsky A.N. Small “large barbs” spawning in tributaries of Lake Tana: what are they? // Folia Zool. 1996, vol. 45, supp. 1, pp. 85−96.
  42. Zworykin D.D., Budaev S.V., Darkov A.A. et al. Assessment of the role of chemoreception in the mate choice inbarbs of the Barbus intermedius complex from Lake Tana, Ethiopia // J. Ichthyol. 2006, vol. 46, pp. 694−701.
  43. Levin B.A., Casal‐López M., Simonov E. et al. Adaptive radiation of barbs of the genus Labeobarbus (Cyprinidae) in an East African river // Fresh. Biol. 2019, vol. 64, pp. 1721–1736.
  44. Levin B.A., Komarova A.S., Rozanova O.L., Golubtsov A.S. Unexpected diversity of feeding modes among chisel-mouthed Ethiopian Labeobarbus (Cyprinidae) // Water. 2021b, vol. 13, 2345.
  45. Levin B., Komarova A., Simonov E. et al. Speciation and repeated origins of hypertrophied lips in parallel adaptive radiations of cyprinid fish from East Africa // Ecol. Evol. 2023, vol. 13, e10523.
  46. Komarova A.S., Golubtsov A.S., Levin B.A. Trophic Diversification out of Ancestral Specialization: An Example from a Radiating African Cyprinid Fish (Genus Garra) // Diversity. 2022, vol. 14, 629.
  47. Baron V.D., Orlov A.A., Golubtsov A.S. Polyphasic discharges of the electric organ of the speckled stonebasher Pollimyrus isidori (Mormyridae, Mormyriformes) from the Nile basin // Dokl. Biol. Sci. 2012, vol. 443, pp. 123–125.
  48. Baron V.D., Orlov A.A., Golubtsov A.S. African Clarias catfish elicits long-lasting weakly electric pulses // Experientia. 1994, vol. 50, pp. 644–647.
  49. Baron V.D., Morshnev K.S., Olshansky V.M. et al. Observations of the electric activity of silurid catfishes (Siluriformes) in Lake Chamo (Ethiopia) // J. Ichthyol. 2001, vol. 41, pp. 536–542.
  50. Baron V.D., Orlov A.A., Golubtsov A.S. Electric discharges from the African catfishes Clarias anguillaris and Heterobranchus longifilis: similarity of discharge characteristics in the family Clariidae // Dokl. Biol. Sci. 2008, vol. 418, pp. 1–3.
  51. Orlov A.A., Baron V.D., Golubtsov A.S. Electric discharges of two African catfishes of the genus Auchenoglanis (Claroteidae, Siluriformes) // Dokl. Biol. Sci. 2015, vol. 462, pp. 370–372.
  52. Baron V.D., Orlov A.A., Golubtsov A.S. Electric organ discharges of Cyphomyrus petherici (Mormyridae, Osteoglossiformes) from the White Nile Basin // Dokl. Biol. Sci. 2018, vol. 481, pp. 142–145.
  53. Orlov A.A., Golubtsov A.S., Baron V.D., Pavlov D.S. Bioelectric fields of the African marbled lungfish Protopterus aethiopicus (Sarcopterygii: Protopteridae), African (Heterotis niloticus) and South American silver (Osteoglossum bicirrhosum) arowanas (Actinopterygii: Osteoglossidae): Primitive electrogenesis? // J. Ichthyol. 2015, vol. 5, pp. 874–879.
  54. Golubtsov A.S., Krysanov E.Yu. Karyological study of some cyprinid species from Ethiopia. The ploidy differences between large and small Barbus of Africa // J. Fish. Biol. 1993, vol. 42, pp. 445–455.
  55. Krysanov E.Yu., Golubtsov A.S. Karyotypes of some Ethiopian Barbus and Varicorhinus from the Nile Basin including Lake Tana morphotypes // Fol. Zool. 1996, vol. 45, supp. 1, pp. 67–75.
  56. Krysanov E.Yu., Golubtsov A.S. Karyotypes of eight species of the African climbing gouramies of the genera Ctenopoma and Microctenopoma (Anabantidae, Perciformes) with comments on their phylogenetic relationships // J. Ichthyol. 2001, vol. 41, pp. 698–702.
  57. Simanovsky S., Medvedev D., Tefera Fekadu, Golubtsov A. First cytogenetic information for five Nilotic elephantfishes and a problem of ancestral karyotype of the family Mormyridae (Osteoglossiformes) // Compar. Cytogenet. 2020, vol. 14, pp. 387–397.
  58. Simanovsky S., Medvedev D., Tefera Fekadu, Golubtsov A. Derived karyotypes in two elephantfish genera (Hyperopisus and Pollimyrus): lowest chromosome number in the family Mormyridae (Osteoglossiformes) // Compar. Cytogenet. 2021, vol. 15, pp. 345–354.
  59. Simanovsky S.A., Medvedev D.A., Tefera Fekadu, Golubtsov A.S. First cytogenetic data on Afrotropical lutefishes (Citharinidae) in the light of karyotype evolution in Characiformes // Compar. Cytogenet. 2022, vol. 16, pp. 143–150.
  60. Mina M.V., Mironovsky A.N., Golubtsov A.S., Dgebuadze Y.Y. II–Morphological diversity of “large barbs”; from Lake Tana and neighbouring areas: Homoplasies or synapomorphies? // Ital. J. Zool. 1998, vol. 65, supp. 1, pp. 9–14.
  61. Berrebi P., Valiushok D. Genetic divergence among morphotypes of Lake Tana (Ethiopia) barbs // Biol. J. Linn. Soc. 1998, vol. 64, pp. 369–384.
  62. Dimmick W.W., Berendzen P.B., Golubtsov A.S. Genetic comparison of three Barbus (Cyprinidae) morphotypes from the Genale River, Ethiopia // Copeia.2001, no. 4, pp. 1123–1129.
  63. Levin B.A., Golubtsov A.S., Dgebuadze Y.Y., Mugue N.S. New evidence of homoplasy within the African genus Varicorhinus (Cyprinidae): an independent origin of specialized scraping forms in the adjacent drainage systems of Ethiopia inferred from mtDNA analysis // Afr. Zool. 2013, vol. 48, pp. 400–406.
  64. Levin B.A. New data on morphology of the African scraping feeder Varicorhinus beso (Osteichthyes: Cyprinidae) with the special reference to specialized traits // J. Ichthyol. 2012, vol. 52, pp. 908–923.
  65. Waddington C.H. Genetic assimilation of an acquired character // Evolution. 1953, vol. 7, pp. 118–126.
  66. Yang L., Arunachalam M., Sado T. et al. Molecular phylogeny of the cyprinid tribe Labeonini (Teleostei: Cypriniformes) // Mol. Phyl. Evol. 2012, vol. 65, pp. 362–379.
  67. Levin B.A., Golubtsov A.S. New insights into the molecular phylogeny and taxonomy of mormyrids (Osteoglossiformes, Actinopterygii) in northern East Africa // J. Zool. Syst. Evol. Res. 2018, vol. 56, pp. 61–76.
  68. Levin B.A., Dgebuadze Y.Y., Tefera F. et al. An evidence of past introgressive hybridization between Labeobarbus ethiopicus and L. intermedius in the Ethiopian Rift Valley, East Africa // Ethiop. J. Bio. Sci. 2017, vol. 16, pp. 45–60.
  69. Котов А.А. Морфология и филогения Anomopoda (Crustacea: Cladocera). М.: Т-во научных изданий КМК, 2013.Kotov A.A. Morphology and phylogeny of Anomopoda (Crustacea: Cladocera). Moscow: KMK Scientific Press, 2013. (In Russ.)
  70. Martens K., Tudorancea C. Seasonally and spatial distribution of the ostracods of Lake Zwai, Ethiopia (Crustacea: Ostracoda) // Fresh. Biol. 1991, vol. 25, pp. 233–241.
  71. Dumont H.J. On the diversity of the Cladocera in the tropics // Studies on the Ecology of Tropical Zooplankton. 1994, vol. 92, pp. 27–38.
  72. Wondie A. Dynamics of the major phytoplankton and zooplankton littoral communities and their role in the food-web of Lake Tana, Ethiopia: PhD thesis. Addis Ababa, 2006. Pp. 1–161.
  73. Fetahi T., Mengistou S., Schagerl M. Zooplankton community structure and ecology of the tropical-highland Lake Hayq, Ethiopia // Limnologica. 2011, vol. 41, pp. 389–397.
  74. Vijverberg J., Dejen E., Getahun A., Nagelkerke L.A. Zooplankton, fish communities and the role of planktivory in nine Ethiopian lakes // Hydrobiologia. 2014, vol. 722, pp. 45–60.
  75. Embaye E., Wakjira M., Tiku S. Diversity and abundance of crustacean zooplankton community in Gilgel Gibe reservoir, Southwestern Ethiopian Highland // J. Appl. Life. Sci. Intern. 2017, vol. 11, pp. 1–12.
  76. Kotov A.A., Taylor D.J. A new African lineage of the Daphnia obtusa group (Cladocera: Daphniidae) disrupts continental vicariance patterns // J. Plankt. Res. 2010, vol. 32, pp. 937–949.
  77. Neretina A.N., Kotov A.A. A new species of Acroperus Baird, 1843 (Cladocera: Chydoridae) from Africa // Zootaxa. 2015, vol. 4039, pp. 516–528.
  78. Popova E.V., Petrusek A., Kořínek V. et al. Revision of the old world Daphnia (Ctenodaphnia) similis group (Cladocera: Daphniidae) // Zootaxa. 2016, vol. 4161, pp. 1–40.
  79. Неретина А.Н. Фауна ветвистоусых ракообразных (Crustacea: Cladocera) Эфиопии / Дисс. … канд. биол. наук. М., 2018.Neretina A.N. The Cladocera (Crustacea: Branchiopoda) of Ethiopia / PhD thesis. Moscow, 2018. (In Russ.)
  80. Krylov A.V., Zelalem W., Prokin A.A. Qualitative composition and quantitative characteristics of zooplankton in the littoral zone of Lake Tana (Ethiopia) at the end of the dry season // Inland. Water. Biol. 2020a, vol. 13, pp. 206–213.
  81. Eggermont H., Wondafrash M., Van Damme K. et al. Bale Mountain Lakes: ecosystems under pressure of Global Change? // Walia-Special Edition on the Bale Mountains. 2012, pp. 171–180.
  82. Krylov A.V., Zelalem W., Prokin A.A., Shkil F.N. Zooplankton in the Lake Tana shore zone (Ethiopia) at the beginning of the dry season // Inland. Water. Biol. 2020b, vol. 13, pp. 605–612.
  83. Neretina A.N., Karabanov D.P., Sacherova V., Kotov A.A. Unexpected mitochondrial lineage diversity within the genus Alonella Sars, 1862 (Crustacea: Cladocera) across the Northern Hemisphere // PeerJ. 2021, vol. 9, e10804.
  84. Neretina A.N., Sinev A.Y. A new species of Flavalona Sinev & Dumont, 2016 (Crustacea: Branchiopoda) from Bale Mountains, Ethiopia // Zootaxa. 2021, vol. 4948, pp. 113–122.
  85. Akoma O.C., Goshu G., Imoobe T.O.T. Variations in zooplankton diversity and abundance in five research fish ponds in northwest Amhara region, Ethiopia // Ife J. Sci. 2014, vol. 16, pp. 81–89.
  86. Коровчинский Н.М. Ветвистоусые ракообразные отряда Ctenopoda мировой фауны (морфология, систематика, экология, зоогеография). М.: Т-во научных изданий КМК, 2004.Korovchinsky N.M. The Cladocera of the order Ctenopoda of the World fauna (morphology, taxonomy, zoogeography). Moscow: KMK Scientific Press, 2004. (In Russ.)
  87. Orlova-Bienkowskaja M.Y. Daphniidae: genus Simocephalus // Guides to the identification of the microinvertebrates of the continental waters of the World. 2001, vol. 17, pp. 1–130.
  88. Kotov A.A., Štifter P. Cladocera: family Ilyocryptidae (Branchiopoda: Cladocera: Anomopoda) // Guides to the identification of the microivertebrates of the Continental Waters of the world. 2006, vol. 22, pp. 1–172.
  89. Garibian P.G., Neretina A.N., Taylor D.J., Kotov A.A. Partial revision of the neustonic genus Scapholeberis Schoedler, 1858 (Crustacea: Cladocera): Decoding of the barcoding results // PeerJ. 2020, vol. 8, e10410.
  90. Rey J., Saint-Jean L. Les Cladocères (Crustacés, Branchiopodes) du Tchad // Cah. ORSTOM, Sér. Hydrobiol. 1968, vol. 2, pp. 79–118.
  91. Rey J., Saint-Jean L. Les Cladocères (Crustacés, Branchiopodes) du Tchad (Deuxième note) // Cah. ORSTOM, Sér. Hydrobiol.1969, vol. 3, pp. 21–42.
  92. Dumont H.J., Pensaert J., Van de Velde I. The crustacean zooplankton of Mali (West Africa) Faunal composition, community structure, and biogeography, with a note on the water chemistry of the lakes of the internal delta of the River Niger // Hydrobiologia. 1981, vol. 80, pp. 161–187.
  93. Egborge A.B., Onwudinjo E., Chigbu P.C. Cladocera of coastal rivers of western Nigeria // Hydrobiologia. 1994, vol. 272, pp. 39–46.
  94. Van Damme K., Eggermont H. The Afromontane Cladocera (Crustacea: Branchiopoda) of the Rwenzori (Uganda–DR Congo): taxonomy, ecology and biogeography // Hydrobiologia. 2011, vol. 676, pp. 57–100.
  95. Chiambeng G.Y., Dumont H.J. The Branchiopoda (Crustacea: Anomopoda, Ctenopoda and Cyclestherida) of the rain forests of Cameroon, West Africa: low abundances, few endemics and a boreal–tropical disjunction // J. Biogeogr. 2005, vol. 32, pp. 1611–1620.
  96. Smirnov N.N. Check-list of the South-African Cladocera (Crustacea: Branchiopoda) // Zootaxa. 2008, vol. 1788, pp. 47–56.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Hydrographic network of the Abyssinian Highlands

Жүктеу (253KB)
3. Fig. 2. Typical representatives of the forms of large African barbels Barbus (=Labeobarbus) gananensis and B. jubae from the Genale river GF – generalized form, typical Barbus (=Labeobarbus) gananensis; SH – high-bodied form; LMP – large–mouthed fish–eating form; LMS – large–mouthed scraper; SMS - small-mouthed scraper, probable hybrid of B. gananensis × B. jubae; LIP - lipped form with hypertrophied lips; VJ - B. jubae, varicarinoid; A – fish the whole thing; B – the head

Жүктеу (156KB)
4. Fig. 3. The main oral phenotypes in the trophic diversification of Barbus (=Labeobarbus) a – generalist; b – spongy; c – scraping; d – fish-eater

Жүктеу (56KB)
5. Fig. 4. Median Barbus haplotype network (=Labeobarbus) from the main basins of the Abyssinian Highlands, reconstructed from 769 cytochrome b (mtDNA) sequences Haplogroup 1 corresponds to the L. gananensis/L. jubae complex; haplogroups 2-5 unite the polymorphic group L. intermedius s. lato; black circles are hypothetical haplotypes. The network is built in the Pop ART 1.7 program (compiled according to [23] with changes)

Жүктеу (301KB)
6. Fig. 5. Garra sp. ecomorphs from the Sor river (White Nile basin) 1 – generalist, 136 mm, SL; 2 – long–legged, 99 mm, SL; 3 – narrow–mouthed, 100 mm, SL; 4 - wide-mouthed, 100 mm, SL; 5 - predatory, 193 mm, SL; 6 – lipped, 128 mm

Жүктеу (170KB)
7. Fig. 6. ML-phylogeny of sympatric Garra forms from the Sor River (White Nile basin) by concatenated sequences of RAD loci (7370 loci, 969450 base pairs) The proportions of genetic clusters obtained in the MAVERICK program are shown to the right of the sample names; black circles at the base of the nodes indicate 100% support for bootstrap4 (compiled according to [25] with changes)

Жүктеу (396KB)

© Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».