Innovative radiopharmaceuticals in cancer diagnostics and radionuclide therapy

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The article presents the development trends of nuclear medicine in oncology. It has been shown that the main trends in modern radiopharmaceutics are closely related to theranostics, i.e., the use of radiopharmaceuticals obtained on the basis of a single delivery vector labeled with diagnostic and therapeutic radionuclides. In nuclear medicine, this approach has found application for the individualization and planning of radionuclide therapy. The results of our own research aimed at the development of radiopharmaceuticals for the diagnosis and radionuclide therapy of cancer are presented.

Толық мәтін

Рұқсат жабық

Авторлар туралы

V. Chernov

Cancer Research Institute — branch of the Tomsk National Research Medical Center of the Russian Academy of Sciences; Tomsk Polytechnic University

Хат алмасуға жауапты Автор.
Email: chernov@tnimc.ru

член-корреспондент РАН, заместитель директора по научной и инновационной работе, заведующий отделением радионуклидной диагностики НИИ онкологии Томского НИМЦ

Ресей, Tomsk; Tomsk

Әдебиет тізімі

  1. Состояние онкологической помощи населению России в 2019 году // Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. М.: МНИОИ им. П.А. Герцена, 2020.
  2. Национальное руководство по радионуклидной диагностике. В 2 т. // Под ред. Ю.Б. Лишманова, В.И. Чернова. Томск: STT, 2010.
  3. Tolmachev V.M., Chernov V.I., Deyev S.M. Targeted nuclear medicine. See and destroy // Russ. Chem. Rev. 2022. V. 91. RCR5034.
  4. Чернов В.И., Медведева А.А., Синилкин И.Г. и др. Ядерная медицина в диагностике и адресной терапии злокачественных новообразований // Бюллетень сибирской медицины. 2018. Т. 17 (1). С. 220–231.
  5. Wester H.J., Kessler H. Molecular Targeting with Peptides or Peptide-Polymer Conjugates: Just a Question of Size? // Journal of Nuclear Medicine December. 2005. V. 46 (12). P. 1940–1945.
  6. Чернов В.И., Брагина О.Д., Синилкин И.Г. и др. Радиоиммунотерапия в лечении злокачественных образований // Сибирский онкологический журнал. 2016. № 2. С. 101–106.
  7. Чернов В.И., Брагина О.Д., Синилкин И.Г. и др. Радиоиммунотерапия: современное состояние проблемы // Вопросы онкологии. 2016. № 1. С. 24–30.
  8. Wiseman G., White C., Stabin M. et al. Phase I/II 90Y-Zevalin (yttrium-90 ibritumomab tiuxetan, IDEC-Y2B8) radioimmunotherapy dosimetry results in relapsed or refractory non-Hodgkin’s lymphoma // Eur. J. Nucl. Med. 2000. V. 27. P. 766–777.
  9. Walter R.B. Where do we stand with radioimmunotherapy for acute myeloid leukemia? // Expert Opin. Biol. Ther. 2022. V. 22 (5). P. 555–561.
  10. Bragina O., Chernov V., Schulga A. et al. Phase I trial of 99mTc-(HE)3-G3, a DARPin-based probe for imaging of HER2 expression in breast cancer // Journal of Nuclear Medicine. 2022. V. 63. P. 528–535.
  11. Bragina O., von Witting O., Garousi J. et al. Phase I Study of 99mTc-ADAPT6, a Scaffold Protein–Based Probe for Visualization of HER2 Expression in Breast Cancer // Journal of Nuclear Medicine. 2021. V. 62 (4). P. 493–499.
  12. Dijkers E.C., Oude Munnink T.H., Kosterink J.G. et al. Biodistribution of 89Zr-trastuzumab and PET imaging of HER2-positive lesions in patients with metastatic breast cancer // Clin. Pharmacol. Ther. 2010. V. 87 (5). P. 586–592.
  13. Garousi J., von Witting E., Borin J. et al. Radionuclide therapy using ABD-fused ADAPT scaffold protein: Proof of Principle // Biomaterials. 2021. V. 266. 120381.
  14. Virgolini I. et al. Somatostatin receptor subtype specificity and in vivo binding of a novel tumor tracer, 99mTc-P829 // Cancer Res. 1998. V. 58. P. 1850–1859.
  15. Strosberg J.R., Fine R.L., Choi J. et al. First-line chemotherapy with capecitabine and temozolomide in patients with metastatic pancreatic endocrine carcinomas // Cancer. 2011. V. 117. P. 268–275.
  16. Wild D., Mäcke H.R., Waser B. et al. 68Ga-DOTANOC: a first compound for PET imaging with high affinity for somatostatin receptor subtypes 2 and 5 // European Journal of Nuclear Medicine and Molecular Imaging. 2005. V. 32. P. 724.
  17. Pfeifer A., Knigge U., Mortensen J. et al. Clinical PET of neuroendocrine tumors using 64Cu-DOTATATE: first-in-humans study // Journal of Nuclear Medicine. 2012. V. 53. P. 1207–1215.
  18. Meisetschläger G., Poethko T., Stah A. et al. Gluc-Lys([18F]FP)-TOCA PET in patients with SSTR-positive tumors: biodistribution and diagnostic evaluation compared with [111In] DTPA-octreotide // Journal of Nuclear Medicine. 2006. V. 47. P. 566–573.
  19. Ambrosini V., Campana D., Bodei L. et al. 68Ga-DOTANOC PET/CT clinical impact in patients with neuroendocrine tumors // Journal of Nuclear Medicine. 2010. V. 51. P. 669–673.
  20. Ezziddin S., Lohmar J., Yong-Hing C.J. et al. Does the pretherapeutic tumor SUV in 68Ga DOTATOC PET predict the absorbed dose of 177Lu octreotate? // Clinical Nuclear Medicine. 2012. V. 37. P. 141–147.
  21. Fendler W.P., Eiber M., Beheshti M. et al. 68Ga-PSMA PET/CT: Joint EANM and SNMMI procedure guideline for prostate cancer imaging: version 1.0 // Eur. J. Nucl. Med. Mol. Imaging. 2017. V. 44. P. 1014–1024.
  22. Debnath S., Zhou N., McLaughlin M. et al. PSMA-Targeting Imaging and Theranostic Agents-Current Status and Future Perspective // Int. J. Mol. Sci. 2022. V. 23 (3). 1158.
  23. Долгушин М.Б., Мещерякова Н.А., Оджарова А.А. и др. Позитронная эмиссионная томография, совмещённая с компьютерной томографией, с 18F-ПСМА-1007 в диагностике рецидива рака предстательной железы: клиническое наблюдение // Онкоурология. 2018. Т. 14 (3). С. 134–138.
  24. Liu C., Zhu Y., Su H. et al. Relationship between PSA Kinetics and Tc-99m HYNIC PSMA SPECT/CT Detection Rates of Biochemical Recurrence in Patients with Prostate Cancer after Radical Prostatectomy // Prostate. 2018. V. 78 (16). P. 1215–1221.
  25. Mottet N., van den Bergh R., Briers E. EAU-ESTRO-SIOG guidelines on prostate cancer. EAU Guidelines // EAU Annual Congress. Barcelona, 2019.
  26. Kratochwil C., Fendler W.P., Eiber M. et al. EANM procedure guidelines for radionuclide therapy with 177Lu-labelled PSMA-ligands (177Lu-PSMA-RLT) // Eur. J. Nucl. Med. Mol. Imaging. 2019. V. 46. P. 2536–2544.
  27. Sartor O., de Bono J., Chi K.N. et al. Lutetium-177-PSMA-617 for metastatic castration-resistant prostate cancer // N. Engl. J. Med. 2021. V. 385. P. 1091–1103.
  28. Kratochwil C., Bruchertseifer F., Giesel F.L. et al. 225Ac-PSMA-617 for PSMA-Targeted α-Radiation Therapy of Metastatic Castration-Resistant Prostate Cancer // J. Nucl. Med. 2016. V. 57 (12). P. 1941–1944.
  29. Mitran B., Thisgaard H., Rosenström U. et al. High Contrast PET Imaging of GRPR Expression in Prostate Cancer Using Cobalt-Labeled Bombesin Antagonist RM26 // Contrast Media Mol. Imaging. 2017. V. 10. 6873684.
  30. Zhang J., Niu G., Fan X. et al. PET Using a GRPR Antagonist 68Ga-RM26 in Healthy Volunteers and Prostate Cancer Patients // J. Nucl. Med. 2018. V. 59 (6). P. 922–928.
  31. Chernov V., Rybina A., Zelchan R. et al. Phase I Trial of [99mTc]Tc-maSSS-PEG2-RM26, a Bombesin Analogue Antagonistic to Gastrin-Releasing Peptide Receptors (GRPRs), for SPECT Imaging of GRPR Expression in Malignant Tumors // Cancers. 2023. V. 15. 1631.
  32. Abouzayed A., Borin J., Lundmark F. et al. The GRPR Antagonist [99mTc]Tc-maSSS-PEG2-RM26 towards Phase I Clinical Trial: Kit Preparation, Characterization and Toxicity // Diagnostics. 2023. V. 13. 1611.
  33. Loktev A., Lindner T., Mier W. et al. A Tumor-Imaging Method Targeting Cancer-Associated Fibroblasts // J. Nucl. Med. 2018. V. 59. P. 1423–1429.
  34. Koerber S.A., Staudinger F., Kratochwil C. et al. The role of FAPI-PET/CT for patients with malignancies of the lower gastrointestinal tract — first clinical experience // J. Nucl. Med. 2020. V. 61. P. 1331–1336.
  35. Giesel F.L., Kratochwil C., Lindner T. et al. 68Ga-FAPI PET/CT: Biodistribution and Preliminary Dosimetry Estimate of 2 DOTA-Containing FAP-Targeting Agents in Patients with Various Cancers // J. Nucl. Med. 2019. V. 60. P. 386–392.
  36. Watabe T., Liu Y., Kaneda-Nakashima K. et al. Theranostics targeting fibroblast activation protein in the tumor stroma: 64Cu and 225Ac labelled FAPI-04 in pancreatic cancer xenograft mouse models // J. Nucl. Med. 2020. V. 61. P. 563–569.
  37. Jin X., Liang N., Wang M. et al. Integrin Imaging with 99mTc-3PRGD2 SPECT/CT Shows High Specificity in the Diagnosis of Lymph Node Metastasis from Non-Small Cell Lung Cancer // Radiology. 2016. V. 281 (3). P. 958–966.
  38. Тицкая А.А., Чернов В.И., Слонимская Е.М., Синилкин И.Г. Маммосцинтиграфия с 199Tl в диагностике рака молочной железы // Сибирский онкологический журнал. 2008. № 6. С. 5–10.
  39. Чернов В.И., Зельчан Р.В., Тицкая А.А. и др. Однофотонная эмиссионная компьютерная томография с 99mTc-МИБИ и 199Tl-хлоридом в диагностике и оценке эффективности химиотерапии первичных и рецидивных злокачественных опухолей гортани и гортаноглотки // Молекулярная медицина. 2013. № 4. С. 26–30.
  40. Тицкая А.А., Чернов В.И., Слонимская Е.М. и др. Маммосцинтиграфия с 99mTc-МИБИ в диагностике рака молочной железы // Сибирский медицинский журнал. 2010. № 4. С. 92–96.
  41. Barrios-Lopez B., Bergstrom K. Radiolabeled sugars used for PET and SPECT imaging // Curr. Radiopharm. 2016. V. 9 (3). P. 180–186.
  42. Зельчан Р.В., Медведева А.А., Синилкин И.Г. и др. Изучение функциональной пригодности туморотропного радиофармпрепарата 99mTc-1-Тио- D-глюкоза в эксперименте // Молекулярная медицина. 2018. Т. 16 (3). С. 54–57.
  43. Зельчан Р.В., Синилкин И.Г., Медведева А.А. и др. ОФЭКТ с новым радиофармацевтическим препаратом 99mTc-1-тио-d-глюкоза в мониторинге злокачественной опухоли головного мозга // Медицинская радиология и радиационная безопасность. 2021. Т. 66 (2). С. 78–82.
  44. Chernov V., Dudnikova E., Zelchan R. et al. Phase I Clinical Trial Using [99mTc]Tc-1-thio-D-glucose for Diagnosis of Lymphoma Patients // Pharmaceutics. 2022. V. 14. 1274.
  45. Чернов В.И., Дудникова Е.А., Гольдберг В.Е. Метаболическая ПЭТ и ОФЭКТ-визуализация при лимфомах. Екатеринбург: АМБ, 2022.
  46. Chernov V.I., Sinilkin I.G., Zelchan R.V. et al. Experimental study of 99mTc-aluminum oxide use for sentinel lymph nodes detection // AIP Conference Proceedings. 2016. V. 1760. 020012.
  47. Doroshenko A., Chernov V., Medvedeva A. et al. The first experience of using of 99mTc-Al2O3 for detection of sentinel lymph nodes in breast cancer // IOP Conference Series: Materials Science and Engineering. 2016. V. 135. 012011.
  48. Очиров М.О., Коломиец Л.А., Чернов В.И. и др. Первый опыт клинического применения лапароскопического гамма-зонда для интраоперационной визуализации “сторожевых” лимфатических узлов при гинекологическом раке // Сибирский онкологический журнал. 2018. Т. 17 (5). С. 45–51.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. CHERNOV Vladimir Ivanovich - Corresponding Member of the Russian Academy of Sciences, Deputy Director for Scientific and Innovation Work, Head of the Department of Radionuclide Diagnostics, Research Institute of Oncology, Tomsk National Research Medical Center.

Жүктеу (88KB)
3. Fig. 1. PET image of a patient with HER2/neu-positive breast cancer, performed 5 days after administration of 89Zr-transtuzumab (a), arrows indicate metastases to the liver and bones [12]; SPECT image of a patient with HER2/neu-positive breast cancer 2 hours after administration of 99mTc-ADAPT6 (b), arrows indicate the primary tumor, metastases to the lymph nodes, liver and bones

Жүктеу (112KB)
4. Fig. 2. SPECT/CT image of a patient with HER2/neu-positive right breast cancer before treatment, performed 2 hours after administration of 99mTc-DARPIN-G3 (a), arrows indicate the primary tumor (SUVmax = 3.1), lymphatic metastases nodes (SUVmax = 8.8) and bones; SPECT/CT image of the same patient after two courses of transtuzumab therapy 2 hours after administration of 99mTc-DARPIN-G3 (b), arrows indicate the primary tumor (SUVmax = 0.55), metastases are not visualized

Жүктеу (212KB)
5. Fig. 3. SPECT/CT with 99mTc-octreotide of a patient with neuroendocrine lung cancer: a — conglomerate of the primary tumor and metastases to the lymph nodes; b - bone metastases; c – spleen

Жүктеу (161KB)
6. Fig. 4. 99mTc-PSMA SPECT of a patient with prostate cancer before (a) and after (b) four courses of 177Lu-PSMA radioligand therapy

Жүктеу (120KB)
7. Fig. 5. SPECT/CT with 99mTc-RM26 of patients with prostate cancer (a) and breast cancer (b) Arrows indicate the accumulation of RFLP in the tumor and lymphogenous metastasis

Жүктеу (178KB)
8. Fig. 6. SPECT with 199 Tl of a patient with breast cancer. Arrows indicate the accumulation of RFLP in the tumor.

Жүктеу (115KB)
9. Fig. 7. SPECT/CT with 99mTc-1-Thio-D-glucose of a patient with recurrent glioblastoma. Arrows indicate the accumulation of RFLP in the tumor.

Жүктеу (379KB)
10. Fig. 8. SPECT/CT with 99mTc-1-Thio-D-glucose of a patient with Hodgkin lymphoma. Arrows indicate the accumulation of RFLP in the lymph nodes of the right axillary region

Жүктеу (244KB)
11. Fig. 9. SPECT/CT of a patient with right breast cancer after paratumoral administration of RFLP “Sentiscan, 99mTc”

Жүктеу (129KB)

© Russian Academy of Sciences, 2024

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>