Modern approaches to reducing damage from earthquakes

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The experience of the catastrophic earthquake on February 6, 2023 in Turkey reminds us of the need to improve the seismic hazard reduction system in Russia as well. The main protective measure is earthquake-resistant construction based on General Seismic Zoning (GSZ) maps. The current maps, as in global practice, are based on a probabilistic seismic hazard assessment. Over the 25 years of use in Russia, GSZ maps have generally justified themselves. Errors made, both in the direction of underestimating the hazard in the areas of several strong earthquakes and overestimating the hazard in large areas, were inevitable at the level of data available at the time the maps were created.

The work analyzes the most likely causes of errors in the GSZ-maps, ways to overcome them, argues for the need to introduce a risk-based approach to reduce the total economic damage from earthquakes, including unjustified costs for anti-seismic reinforcement of structures, discusses the different goals of probabilistic and deterministic approaches to assessing seismic hazard.

全文:

受限制的访问

作者简介

P. Shebalin

Institute of Earthquake Prediction Theory and Mathematical Geophysics of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: shebalin@mitp.ru
俄罗斯联邦, Moscow

参考

  1. https://www.iii.org/fact-statistic/facts-statisticsglobal-catastrophes
  2. Wyss M., Nekrasova A., Kossobokov V. Errors in expected human losses due to incorrect seismic hazard estimates // Natural Hazards. 2012, vol. 62, iss. 3, pp. 927–935.
  3. Shebalin P.N., Gvishiani A.D., Dzeboev B.A., Skorkina A.A. Why are new approaches to seismic hazard assessment required? // Doklady Earth Sciences. 2022, vol. 507, no. 1, pp. 930–935. (In Russ.)
  4. Cornell C.A. Engineering seismic risk analysis // Bulletin of the Seismological Society of America. 1968, vol. 58, iss. 5, pp. 1583–1606.
  5. Giardini D. The Global Seismic Hazard Assessment Program (GSHAP) – 1992/1999 // Annali di Geofisica. 1999, vol. 42, iss. 6, pp. 957–974.
  6. Set of maps of general seismic zoning of the territory of the Russian Federation – GSZ-97. Scale: 1:8000000. 4 sheets / Ed.-in-chief V.N. Strakhov, V.I. Ulomov; responsible compilers V.I. Ulomov, L.S. Shumilina, A.A. Gusev et al. Moscow: United Institute of Physics of the Earth named after O.Yu. Schmidt, Russian Academy of Sciences, 1999. (In Russ.)
  7. Rikitake T. Classification of earthquake precursors // Tectonophysics. 1979, vol. 54, no. 3–4, pp. 293–309.
  8. Fedotov S.A. Patterns of distribution of strong earthquakes in Kamchatka, the Kuril Islands and North-East Japan // Problems of Engineering Seismology. 1965, no. 10, pp. 66–93. (In Russ.)
  9. Bakun W.H., Lindh, A.G. The Parkfield, California, earthquake prediction experiment // Science. 1985. vol. 229, pp. 619—624.
  10. Bak P., Tang C., Wiesenfeld K. Self-organized criticality: an explanation of 1/ƒ noise // Physical Review Letters. 1987, vol. 59, no. 4, pp. 381–384.
  11. Turcotte D.L., Smalley Jr. R.F., Solla S.A. Collapse of loaded fractal trees // Nature. 1985, vol. 313, no. 6004, pp. 671–672.
  12. Olami Z., Feder H.J.S., Christensen K. Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes // Physical Review Letters. 1992, vol. 68, no. 8, pp. 1244–1247.
  13. Geller R.J., Jackson D.D., Kagan Y.Y., Mulargia F. Earthquakes Cannot Be Predicted // Science. 1997, vol. 275, no. 5306, p. 1616.
  14. Kossobokov V.G., Shchepalina P.D. Times of increased probabilities for occurrence of world’s largest earthquakes: 30 years hypothesis testing in real time // Izvestiya, Physics of the Solid Earth. 2020, vol. 56, no. 1, pp. 36–44. (In Russ.)
  15. Saltykov V.A. A statistical estimate of seismicity level: the method and results of application to Kamchatka // Journal of Volcanology and Seismology. 2011, vol. 5, no. 2, pp. 123–128. (In Russ.)
  16. Spassiani I., Falcone G., Murru M., Marzocchi W. Operational Earthquake Forecasting in Italy: validation after 10 years of operativity // Geophysical Journal International. 2023, vol. 234, no. 3, pp. 2501–2518.
  17. Heaton T. A Model for a Seismic Computerized Alert Network // Science. 1985, vol. 228, no. 4702, pp. 987–990.
  18. Finazzi F., Fassò A. A statistical approach to crowdsourced smartphone-based earthquake early warning systems // Stochastic Environmental Research and Risk Assessment. 2016, vol. 31 (7), pp. 1649–1658.
  19. New catalogue of strong earthquakes on the territory of the USSR from ancient times to 1975. / Eds. N.V. Kondorskaya, N.V. Shebalin. Moscow: Nauka, 1977. (In Russ.)
  20. Kossobokov V.G., Nekrasova A.K. Global Seismic Hazard Assessment Program (GSHAP) maps are misleading // Problems of Engineering Seismology. 2011, vol. 38, no. 1, pp. 65–76. (In Russ.)
  21. Castaños H., Lomnitz C. PSHA: is it science? // Engineering Geology. 2002, vol. 66, iss. 3–4, pp. 315–317.
  22. Gvishiani A.D., Vorobieva I.A., Shebalin P.N. et al. Integrated earthquake catalog of the eastern sector of the Russian arctic // Applied Sciences (Switzerland). 2022, vol. 12, no. 10, p. 5010.
  23. Ulomov V.I., Bogdanov M.I. Explanatory note to the set of GSZ-2016 maps and a list of settlements located in seismically active zones // Ingenernye izyskaniya. 2016, no. 7, pp. 49–60. (In Russ.)
  24. Gerstenberger M.C., Marzocchi W., Allen T. et al. Probabilistic seismic hazard analysis at regional and national scales: State of the art and future challenges // Reviews of Geophysics. 2020, vol. 58, e2019RG000653.
  25. Gutenberg B., Richter C.F. Frequency of earthquakes in California // Bulletin of the Seismological Society of America. 1944, vol. 34 (4), pp. 185–188.
  26. Vorobieva I., Grekov E., Krushelnitskii K. et al. High resolution seismicity smoothing method for seismic hazard assessment // Russian Journal of Earth Sciences. 2024, vol. 24, no. 1, ES1003.
  27. Shebalin P.N., Baranov S.V., Vorobieva I.A. et al. Seismicity Modeling in Tasks of Seismic Hazard Assessment // Doklady Earth Sciences. 2024, vol. 515, pp. 514–525.
  28. Zhuang J., Ogata Y., Vere-Jones D. Analyzing earthquake clustering features by using stochastic reconstruction // J. Geophys. Res. 2004, vol. 109, B05301.
  29. Shebalin P.N., Narteau C., Baranov S.V. Earthquake Productivity Law // Geophysical Journal International. 2020, vol. 222, pp. 1264–1269.
  30. Baranov S.V., Narteau C., Shebalin P.N. Modeling and prediction of aftershock activity // Surveys in Geophysics. 2022, vol. 43, no. 2, pp. 437–481.
  31. Pisarenko V.F., Rodkin M.V. Approaches to Solving the Maximum Possible Earthquake Magnitude (Mmax) Problem // Surveys in Geophysics. 2022, vol. 43, pp. 561–595.
  32. Gvishiani A.D., Dzeboev B.A., Soloviev A.A. Problem of recognition of strong-earthquake-prone areas: a state-of-the-art review // Izvestiya, Physics of the Solid Earth. 2020, vol. 56, no. 1, pp. 1–23. (In Russ.)
  33. Shebalin P., Narteau C., Holschneider M. From alarm-based to rate-based earthquake forecast models // Bulletin of the Seismological Society of America. 2012, vol. 102, no. 1, pp. 64–72.
  34. Vladimirova I.S., Lobkovsky L.I., Gabsatarov Y.V. et al. Patterns of the seismic cycle in the Kuril Island arc from GPS observations // Pure and Applied Geophysics. 2020, vol. 177, no. 8, pp. 3599–3617.
  35. Mikhailov V.O., Timoshkina E.P. Geodynamic modeling of the process of the formation and evolution of lithospheric structures: the experience of Schmidt institute of Physics of the Earth, RAS // Izvestiya, Physics of the Solid Earth. 2019, vol. 55, no. 1, pp. 102–110. (In Russ.)
  36. Rebetsky Yu.L. Еectonophysical zoning of seismogenic faults in Eastern Anatolia and February 6, 2023 Kahramanmaraş earthquakes // Izvestiya, Physics of the Solid Earth. 2023, vol. 59, no. 6, pp. 851–877. (In Russ.)

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Comparison of areas of different scores on the maps of SR-97 and SR-2016 and real earthquakes: a – shares of the total area of theoretical isoseists of 6, 7, 8 and 9 points from earthquakes in 1997-2022, multiplied by 20; b – shares of areas of zones of different scores (6 or more) on the maps of the SRP-2016; b – on the maps of the SRP-97; the area of the territory of Russia is taken as 100%; maps marked “A” corresponds to the probability of 0.1 exceeding the corresponding intensity over 50 years, maps “B" – 0.05, maps “C" – 0.01

下载 (27KB)
3. Fig. 2. LDF is a model based on which the maps of SR-97 and the epicenters of strong earthquakes since 1997 have been built. Seismolineaments are shown by red lines, the thickness of which corresponds to the maximum magnitude; maximum magnitudes for domains are indicated by color; asterisks are epicenters, numbers next to them are magnitude

下载 (51KB)
4. Fig. 3. Magnitude-frequency distribution for the real catalog of earthquakes in the eastern sector of the Russian Arctic for 1982-2020. (triangles) and the LDF model reduced to an equivalent period of 39 years (squares) Circles – distribution for the smoothing model

下载 (17KB)
5. Fig. 4. Spatial distribution of actual and model earthquakes in the eastern sector of the Russian Arctic with M≥4.6 The circles are the epicenters of actual earthquakes in 1982-2020, their sizes increase with increasing magnitude; the color shows the density of the number of model earthquakes per year; the LDF model underlying the OSR-2016 was used [23]

下载 (36KB)
6. Fig. 5. Spatial distribution of actual and model earthquakes (M≥4.6) in the eastern sector of the Russian Arctic The circles are the epicenters of actual earthquakes for 1982-2020; the color shows the density of model earthquakes per year; the color correspondence of the density coincides with Figure 4; the average position model [26] was used, based on events with M≥4.0 for 1982-2020.

下载 (30KB)

版权所有 © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».