Epidemiological, cellular, genetic and epigenetic aspects of biosafety
- Authors: Akimkin V.G.1, Zverev V.V.2,3, Kirpichnikov M.P.4,5, Sverdlov E.D.6, Starodubov V.I.5,7, Yankovskyd N.K.4,8
-
Affiliations:
- Central Research Institute for Epidemiology
- I.I. Mechnikov Research Institute of Vaccines and Serums
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation
- M.V. Lomonosov Moscow State University
- The Russian Academy of Sciences
- Research Center “Kurchatov Institute”
- Central Research Institute for Organization and Informatization of Healthcare of the Ministry of Health of the Russian Federation
- N.I. Vavilov Institute of General Genetics
- Issue: Vol 94, No 3 (2024)
- Pages: 287-298
- Section: SCIENTIFIC SESSION OF THE GENERAL MEETING OF RAS MEMBERS
- URL: https://journals.rcsi.science/0869-5873/article/view/261600
- DOI: https://doi.org/10.31857/S0869587324030127
- EDN: https://elibrary.ru/GFVWQC
- ID: 261600
Cite item
Abstract
Currently, the problem of biological safety is extremely relevant for all countries of the world due to the expansion of the spectrum of real and potential threats caused by exposure to dangerous agents of biological nature. The pandemic of the new coronavirus infection has clearly demonstrated its vulnerability to the world. The inevitability of the occurrence of future epidemics necessitates the introduction of scientific developments in the field of creation and improvement of methods for amplification of nucleic acids, identification of pathogens using next-generation sequencing, genome editing technologies, etc. It seems advisable to study the reactions of the immune system to recombinant microorganisms containing genes for stimulators of the innate immune response in order to develop platforms for the creation of universal vaccines active against a wide range of pathogens. Based on the analysis of genomes and transcriptomes, it is possible to identify targets (including RNA targets destroyed by RNA interference) that are most promising for the treatment and prevention of new and recurring infectious diseases. The development of an integrated approach to the implementation of the genomic and epigenomic epidemiological surveillance system, taking into account the latest achievements of fundamental research in the field of virology, immunology, and biotechnology, will make a significant contribution to ensuring the biological safety of the Russian Federation.
Full Text

About the authors
V. G. Akimkin
Central Research Institute for Epidemiology
Email: vgakimkin@yandex.ru
академик РАН
Russian Federation, MoscowV. V. Zverev
I.I. Mechnikov Research Institute of Vaccines and Serums; I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation
Email: vitalyzverev@outlook.com
академик РАН
Russian Federation, Moscow; MoscowM. P. Kirpichnikov
M.V. Lomonosov Moscow State University; The Russian Academy of Sciences
Email: kirpichnikov@inbox.ru
академик РАН, заведующий кафедрой биоинженерии
Russian Federation, Moscow; MoscowE. D. Sverdlov
Research Center “Kurchatov Institute”
Email: edsverd@gmail.com
академик РАН
Russian Federation, MoscowV. I. Starodubov
The Russian Academy of Sciences; Central Research Institute for Organization and Informatization of Healthcare of the Ministry of Health of the Russian Federation
Email: starodubov@presidium.ras.ru
академик РАН
Russian Federation, Moscow; MoscowN. K. Yankovskyd
M.V. Lomonosov Moscow State University; N.I. Vavilov Institute of General Genetics
Author for correspondence.
Email: yankovsky@vigg.ru
академик РАН
Russian Federation, Moscow; MoscowReferences
- WHO Fact sheets. The top 10 causes of death. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (дата обращения 10.12.2023).
- Государственный доклад “О состоянии санитарно-эпидемиологического благополучия населения в Российской Федерации в 2022 году”. М.: Роспотребнадзор, 2023. Gosudarstvennyj doklad “O sostoyanii sanitarno-epidemiologicheskogo blagopoluchiya naseleniya v Rossijskoj Federacii v 2022 godu” [On the state of sanitary and epidemiological welfare of the population in the Russian Federation in 2022: State Report]. Moskow: Rospotrebnadzor, 2023. (In Russ.)
- Акимкин В.Г., Попова А.Ю., Плоскирева А.А. и др. (2022) COVID-19: эволюция пандемии в России. Сообщение I: проявления эпидемического процесса COVID-19 // Журнал микробиологии, эпидемиологии и иммунобиологии. № 3. С. 269–286. Akimkin V.G., Popova A.Yu., Ploskireva A.A. et al. (2022) COVID-19: evolyuciya pandemii v Rossii. Soobshchenie I: proyavleniya epidemicheskogo processa COVID-19 [COVID-19: the evolution of the pandemic in Russia. Report I: Manifestations of the COVID-19 epidemic process]. Zhurnal mikrobiologii, epidemiologii i immunobiologii, no. 3, pp. 269–286. (In Russ.)
- Онищенко Г.Г., Смоленский В.Ю., Ежлова Е.Б. и др. (2013) Актуальные проблемы биологической безопасности в современных условиях. Часть 1. Концептуальные основы биологической безопасности // Вестник РАМН. № 10. С. 4–13. Onishchenko G.G., Smolensky V.Yu., Ezhlova E.B. et al. (2013) Aktual’nye problemy biologicheskoj bezopasnosti v sovremennyh usloviyah. Chast’ 1. Konceptual’nye osnovy biologicheskoj bezopasnosti [Current problems of biological safety in modern conditions. Part 1. Conceptual basis of biological safety]. Vestnik RAMN, no. 10, pp. 4–13. (In Russ.)
- Семененко Т.А. (2010) Роль банка сывороток крови в системе биологической безопасности страны // Вестник Росздравнадзора. № 3. C. 55–58. Semenenko T.A. (2010) Rol’ banka syvorotok krovi v sisteme biologicheskoj bezopasnosti strany [The role of the blood serum bank in the biological safety system of the country]. Vestnik Roszdravnadzora, no. 3, pp. 55–58. (In Russ.)
- Меринова О.А., Топорков А.В., Меринова Л.К. и др. (2018) Биологическая безопасность: анализ современного состояния системы подготовки специалистов в Российской Федерации // Журнал микробиологии, эпидемиологии и иммунобиологии. № 3. C. 87–96. Merinova O.A., Тoporkov A.V., Merinova L.K. et al. (2018) Biologicheskaya bezopasnost’: analiz sovremennogo sostoyaniya sistemy podgotovki specialistov v Rossijskoj Federacii [Biological safety: analysis the contemporary state of the system of training specialists in Russian Federation]. Zhurnal mikrobiologii, epidemiologii i immunobiologii, no. 3, pp. 87–96. (In Russ.)
- Акимкин В.Г., Семененко Т.А., Дубоделов Д.В. и др. (2023) Теория саморегуляции паразитарных систем и COVID-19 // Вестник РАМН. https://doi.org/10.15690/vramn11607 Akimkin V.G, Semenenko T.A, Dubodelov D.V. et al. (2023) Teoriya samoregulyacii parazitarnyh sistem i COVID-19 [The theory of self-regulation of parasitic systems and COVID-19]. Vestnik RAMN. https://doi.org/10.15690/vramn11607 (In Russ.)
- Акимкин В.Г., Попова А.Ю., Хафизов К.Ф. и др. (2022) COVID-19: эволюция пандемии в России. Сообщение II: динамика циркуляции геновариантов вируса SARS-CoV-2 // Журнал микробиологии, эпидемиологии и иммунобиологии. № 4. С. 381–396. Akimkin V.G., Popova A.Yu., Khafizov K.F. et al. (2022) COVID-19: evolyuciya pandemii v Rossii. Soobshchenie II: dinamika cirkulyacii genovariantov virusa SARS-CoV-2 [COVID-19: evolution of the pandemic in Russia. Report II: dynamics of the circulation of SARS-CoV-2 genetic variants]. Zhurnal mikrobiologii, epidemiologii i immunobiologii, no. 4, pp. 381–396. (In Russ)
- Anaeigoudari A., Mollaei H.R., Arababadi M.K., Nosratabadi R. (2021) Severe Acute Respiratory Syndrome Coronavirus 2: The Role of the Main Components of the Innate Immune System // Inflammation. № 6. P. 2151–2169.
- Fraschilla I., Amatullah H., Jeffrey K.L. (2022) One genome, many cell states: epigenetic control of innate immunity // Curr. Opin. Immunol. V. 75. 102173.
- Ong G.H., Lian B.S.X., Kawasaki T., Kawai T. (2021) Exploration of Pattern Recognition Receptor Agonists as Candidate Adjuvants // Front. Cell. Infect. Microbiol. V. 11. 745016.
- Labarrere C.A., Kassab G.S. (2021) Pattern Recognition Proteins: First Line of Defense Against Coronaviruses // Front. Immunol. V. 12. 652252.
- Mulder W.J.M., Ochando J., Joosten L.A.B. et al. (2019) Therapeutic targeting of trained immunity // Nat. Rev. Drug Discov. № 7. P. 553–566.
- Geckin B., Konstantin Fohse F., Dominguez-Andres J., Netea M.G. (2022) Trained immunity: implications for vaccination // Curr. Opin. Immunol. V. 77. 102190.
- Goodridge H.S., Ahmed S.S., Curtis N. et al. (2016) Harnessing the beneficial heterologous effects of vaccination // Nat. Rev. Immunol. № 6. P. 392–400.
- Shann F. (2010) The non-specific effects of vaccines // Arch. Dis. Child. № 9. P. 662–667.
- Aaby P., Roth A., Ravn H. et al. (2011) Randomized trial of BCG vaccination at birth to low-birth-weight children: beneficial nonspecific effects in the neonatal period? // J. Infect. Dis. № 2. P. 245–252.
- Tercan H., Riksen N.P., Joosten L.A.B. et al. (2021) Trained Immunity: Long-Term Adaptation in Innate Immune Responses // Arterioscler. Thromb. Vasc. Biol. № 1. P. 55–61.
- Bindu S., Dandapat S., Manikandan R. et al. (2022) Prophylactic and therapeutic insights into trained immunity: A renewed concept of innate immune memory // Hum. Vaccin. Immunother. № 1. 2040238.
- Sherwood E.R., Burelbach K.R., McBride M.A. et al. (2022) Innate Immune Memory and the Host Response to Infection // J. Immunol. № 4. P. 785–792.
- Arico E., Bracci L., Castiello L. et al. (2022) Exploiting natural antiviral immunity for the control of pandemics: Lessons from Covid-19 // Cytokine Growth Factor Rev. V. 63. P. 23–33.
- Netea M.G., Dominguez-Andres J., Barreiro L.B. et al. (2020) Defining trained immunity and its role in health and disease // Nat. Rev. Immunol. V. 20. P. 375–388.
- Bekkering S., Dominguez-Andres J., Joosten L.A.B. et al. (2021) Trained Immunity: Reprogramming Innate Immunity in Health and Disease // Annu. Rev. Immunol. V. 39. P. 667–693.
- Fanucchi S., Dominguez-Andres J., Joosten L.A.B. et al. (2021) The Intersection of Epigenetics and Metabolism in Trained Immunity // Immunity. № 1. P. 32–43.
- Nieuwenhuizen N.E., Kulkarni P.S., Shaligram U. et al. (2017) The Recombinant Bacille Calmette-Guerin Vaccine VPM1002: Ready for Clinical Efficacy Testing // Front. Immunol. V. 8. 1147.
- Nieuwenhuizen N.E., Kaufmann S.H.E. (2018) Next-Generation Vaccines Based on Bacille Calmette-Guerin // Front. Immunol. V. 9. 121.
- Moulson A.J., Av-Gay Y. (2021) BCG immunomodulation: From the ‘hygiene hypothesis’ to COVID-19 // Immunobiology. № 1. 152052.
- Escobar L.E. Molina-Cruz A., Barillas-Mury C. (2020) BCG vaccine protection from severe coronavirus disease 2019 (COVID-19) // Proc. Natl. Acad. Sci. USA. № 30. P. 17720–17726.
- Gong W., An H., Wang J. et al. (2022) The Natural Effect of BCG Vaccination on COVID-19: The Debate Continues // Front. Immunol. V. 13. 953228.
- Алексеенко И.В., Василов Р.Г., Кондратьева Л.Г. и др. (2023) Клеточные и эпигенетические аспекты программирования тренированного иммунитета и перспективы создания универсальных вакцин в преддверии учащающихся пандемий // Генетика. № 9. С. 981–1001. Alekseenko I.V., Vasilov R.G., Kondrateva L.G. et al. (2023) Kletochnye i epigeneticheskie aspekty programmirovaniya trenirovannogo immuniteta i perspektivy sozdaniya universal’nyh vakcin v preddverii uchashchayushchihsya pandemij [Cellular and epigenetic aspects of the programming of trained immunity and prospects for the creation of universal vaccines in anticipation of increasing pandemics]. Genetika, no. 9, pp. 981–1001. (In Russ.)
- Balnis J., Madrid A., Hogan K.J. et al. (2021) Blood DNA methylation and COVID-19 outcomes // Clin. Epigenet. V. 13. 118.
- Wang G., Xiong Z., Yang F. et al. (2022) Identification of COVID-19-Associated DNA Methylation Variations by Integrating Methylation Array and scRNA-Seq Data at Cell-Type Resolution // Genes (Basel). V. 13 (7). 1109.
- Kaneko S., Takasawa K., Asada K. et al. (2021) Epigenetic Mechanisms Underlying COVID-19 Pathogenesis // Biomedicines. V. 9 (9). 1142.
- Чернухин В.А., Наякшина Т.Н., Мезенцева Н.В. и др. (2005) Штамм бактерий Glacial ice bacte- rium I – продуцент эндонуклеазы рестрикции Gla I // Патент на изобретение RU 2287012 С1. Chernuhin V.A., Nayakshina T.N., Mezenceva N.V. et al. (2005) Shtamm bakterij Glacial ice bacterium I – producent endonukleazy restrikcii Gla I [Bacterial strain Glacial ice bacterium I is a producer of Gla I restriction endonuclease]. Patent na izobretenie RU 2287012 S1. (In Russ.)
- Гончар Д.А., Акишев А.Г., Дегтярёв С.Х. (2009) Способ определения гиперметилированных CpG островков в области генов-супрессоров опухолевого роста в ДНК человека // Патент на изобретение RU 2413773 С1. Gonchar D.A., Akishev A.G., Degtyaryov S.H. (2009) Sposob opredeleniya gipermetilirovannyh CpG ostrovkov v oblasti genov-supressorov opuholevogo rosta v DNK cheloveka [A method for determining hypermethylated CpG islets in the region of tumor suppressor genes in human DNA]. Patent na izobretenie RU 2413773 S1. (In Russ.)
- Кузнецов В.В., Абдурашитов М.А., Акишев А.Г., Дегтярёв С.Х. (2014) Способ определения нуклеотидной последовательности Pu(5mC)GPy в заданном положении протяжённой ДНК // Патент на изобретение RU 2525710 С1. Kuznecov V.V., Abdurashitov M.A., Akishev A.G., Degtyaryov S.H. (2014) Sposob opredeleniya nukleotidnoj posledovatel’nosti Pu(5mC)GPy v zadannom polozhenii protyazhyonnoj DNK [A method for determining the nucleotide sequence of Pu(5mC)GPy in a given position of extended DNA]. Patent na izobretenie RU 2525710 S1. (In Russ.)
- Pashkov E., Korchevaya E., Faizuloev E. et al. (2022) Knockdown of FLT4, Nup98, and Nup205 Cellular Genes Effectively Suppresses the Reproduction of Influenza Virus Strain A/WSN/1933 (H1N1) In vitro // Infect. Disord. Drug. Targets. V. 22 (5). e250322202629.
- Акимкин В.Г., Петров В.В., Красовитов К.В. и др. (2021) Молекулярные методы диагностики новой коронавирусной инфекции: сравнение петлевой изотермической амплификации и полимеразной цепной реакции // Вопросы вирусологии. № 6. С. 417–424. Akimkin V.G., Petrov V.V., Krasovitov K.V. et al. (2021) Molekulyarnye metody diagnostiki novoj koronavirusnoj infekcii: sravnenie petlevoj izotermicheskoj amplifikacii i polimeraznoj cepnoj reakcii [Molecular methods for diagnosing a new coronavirus infection: comparison of loop isothermal amplification and polymerase chain reaction]. Voprosy virusologii, no. 6, pp. 417–424. (In Russ.)
- Синицын С.О., Котов И.А., Самойлов А.Е. и др. (2021) NGS-секвенирования // Молекулярная диагностика и биобезопасность – 2021. COVID-19: эпидемиология, диагностика, профилактика // Онлайн-конгресс с международным участием. 28–29 апреля 2021 г. Сб. тезисов. М.: ЦНИИ эпидемиологии Роспотребнадзора. С. 94–94. Sinitsyn S.O., Kotov I.A., Samoilov A.E. et al. NGS-sekvenirovaniya [NGS sequencing]. Molekulyarnaya diagnostika i biobezopasnost’ – 2021. COVID-19: epidemiologiya, diagnostika, profilaktika // Onlajn-kongress s mezhdunarodnym uchastiem. 28–29 aprelya 2021 g. Sb. tezisov. Moscow: FBUN Central Research Institute of Epidemiology of Rospotrebnadzor, pp. 94–94. (In Russ.)
- Esman A., Cherkashina A., Mironov K. et al. (2022) SARS-CoV-2 Variants Monitoring Using Real-Time PCR // Diagnostics. MDPI. V. 12. 2388.
- Стародубов В.И., Береговых В.В., Акимкин В.Г. и др. (2022) COVID-19 в России: эволюция взглядов на пандемию (часть 1) // Вестник РАМН. № 3. С. 199–207. Starodubov V.I., Beregovykh V.V., Akimkin V.G. et al. (2022) COVID-19 v Rossii: evolyuciya vzglyadov na pandemiyu (chast’ 1) [COVID-19 in Russia: the evolution of views on the pandemic. Message 1]. Vestnik RAMN, no. 3, pp. 199–207. (In Russ.)
- Акимкин В.Г., Семененко Т.А., Углева С.В. и др. (2022) COVID-19 в России: эпидемиология и молекулярно-генетический мониторинг // Вестник РАМН. № 4. С. 254–260. Akimkin V.G., Semenenko T.A., Ugleva S.V. et al. (2022) COVID-19 v Rossii: epidemiologiya i molekulyarno-geneticheskij monitoring [COVID-19 in Russia: epidemiology and molecular genetic monitoring]. Vestnik RAMN, no. 4, pp. 254–260. (In Russ.)
- Стародубов В.И., Береговых В.В., Акимкин В.Г. и др. (2022) COVID-19 в России: эволюция взглядов на пандемию. Сообщение 2 // Вестник РАМН. № 4. С. 291–306. Starodubov V.I., Beregovykh V.V., Akimkin V.G. et al. (2022) COVID-19 v Rossii: evolyuciya vzglyadov na pandemiyu. Soobshchenie 2 [COVID-19 in Russia: the evolution of views on the pandemic. Message 2]. Vestnik RAMN, no. 4, pp. 291–306. (In Russ.)
- Акимкин В.Г. (2022) Эпидемиология и диагностика COVID-19. Мониторинг эволюционных изменений вируса SARS-CoV-2 // Вестник РАН. № 7. С. 647–653. Akimkin V.G. (2022) COVID-19 Epidemiology and Diagnosis: Monitoring Evolutionary Changes in the SARS-COV-2 Virus // Herald of the Russian Academy of Sciences. № 4. P. 392–398.
- Пика М.И., Михеева О.О., Соловьёва Е.Д. и др. (2023) Получение Bst-полимеразы для диагностики различных инфекций методом петлевой изотермической амплификации // Журнал микробиологии, эпидемиологии и иммунобиологии. № 3. С. 210–218. Pika M.I., Mikheeva O.O., Solovyova E.D. et al. (2023) Poluchenie Bst-polimerazy dlya diagnostiki razlichnyh infekcij metodom petlevoj izotermicheskoj amplifikacii [Preparation of Bst polymerase for the diagnosis of various infections using loop isothermal amplification]. Zhurnal mikrobiologii, epidemiologii i immunobiologii, no. 3, pp. 210–218. (In Russ.)
- Хафизов К.Ф., Петров В.В., Красовитов К.В. и др. (2021) Экспресс-диагностика новой коронавирусной инфекции с помощью реакции петлевой изотермической амплификации // Вопросы вирусологии. № 1. С. 17–28. Khafizov K.F., Petrov V.V., Krasovitov K.V. et al. (2021) Ekspress-diagnostika novoj koronavirusnoj infekcii s pomoshch’yu reakcii petlevoj izotermicheskoj amplifikacii [Express diagnosis of new coronavirus infection using loop isothermal amplification reaction]. Voprosy virusologii, no. 1, pp. 17–28. (In Russ.)
Supplementary files
