Synergid activity of lysozyme and carnosine with antimicrobial drugs in relation to Klebsiella pneumoniae

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Klebsiella pneumoniae strains are opportunistic microorganisms that colonize the human gastrointestinal tract and can spread to various tissues and systems of the body, causing a wide range of severe diseases, including pneumonia. The problem of Klebsiella infections has become topical recently due to the spread of hypervirulent and antibiotic-resistant strains in the K. pneumoniae population, which indicated the need to develop modern antimicrobial agents. One of the approaches to combating pathogens of pneumonia is a combination of lysozyme with antimicrobial drugs, which was successfully tested in children’s hospitals in Orenburg. A natural antioxidant and antioxidant, carnosine, is considered as a new candidate in the fight against Klebsiella. A synergistic combination of carnosine with antimicrobial agents against Klebsiella pneumoniae was established in vitro. The results obtained allowed us to expand the range of effective and safe means of combating pathogens of Klebsiella infections.

Full Text

Restricted Access

About the authors

O. V. Bukharin

Institute of Cellular and Intracellular Symbiosis, Ural Branch of the Russian Academy of Sciences

Author for correspondence.
Email: ofrc@list.ru

академик РАН, научный руководитель

Russian Federation, Orenburg

E. V. Ivanova

Institute of Cellular and Intracellular Symbiosis, Ural Branch of the Russian Academy of Sciences

Email: walerewna13@gmail.com

доктор медицинских наук, заведующая лабораторией инфекционной симбиологии

Russian Federation, Orenburg

I. A. Zdvizhkova

Institute of Cellular and Intracellular Symbiosis, Ural Branch of the Russian Academy of Sciences

Email: zdvizhkova.irina@gmail.com

научный сотрудник лаборатории биомониторинга
и молекулярно-генетических исследований

Russian Federation, Orenburg

References

  1. Фесенко О.В., Швайко С.Н. (2019) Пневмонии, вызванные Klebsiella pneumoniae (фридлендеровские пневмонии) // Практическая пульмонология. № 1. С. 22–31. Fesenko O.V., Shvayko S.N. (2019) Pneumonia caused by Klebsiella pneumoniae (Friedlander’s pneumonia). Practical pulmonology, no. 1, pp. 22–31. (In Russ.)
  2. Eshwara V.K., Mukhopadhyay C., Rello J. (2020) Community-acquired bacterial pneumonia in adults: An update. Indian J. Med. Res., vol. 151 (4), pp. 287–302. doi: 10.4103/ijmr.IJMR_1678_19.
  3. Gonzalez-Ferrer S., Peñaloza H.F., Budnick J.A. et al. (2021) Finding Order in the Chaos: Outstanding Questions in Klebsiella pneumoniae Pathogenesis. Infect. Immun., vol. 89 (4), e00693-20.
  4. Bengoechea J.A., Pessoa J.S. (2019) Klebsiella pneumoniae infection biology: living to counteract host defences. FEMS Microbiology Reviews, vol. 43, iss. 2, pp. 123–144.
  5. Prestinaci F., Pezzotti P., Pantosti A. (2015) Antimicrobial resistance: a global multifaceted phenomenon. Pathogens and Global Health, vol. 109 (7), pp. 309–318.
  6. Тарасенко Н.Ф. (1983) Применение лизоцима в комплексной антибактериальной терапии острых пневмоний у детей // Автореф. … канд. мед. наук. 18 с. Tarasenko N.F. (1983) The use of lysozyme in the complex antibacterial therapy of acute pneumonia in children // Аbstract for the degree of Candidate of medical Sciences. 18 p. (In Russ.)
  7. Li B., Zhao Y., Liu C. et al. (2014) Molecular pathogenesis of Klebsiella pneumoniae. Future Microbiol., no. 9, pp. 1071–1081.
  8. Lokida D., Farida H., Triasih R. et al. (2022) Epidemiology of community-acquired pneumonia among hospitalised children in Indonesia: a multicentre, prospective study. BMJ Open, vol. 12 (6), e057957.
  9. Ko W.C., Paterson D.L., Sagnimeni A.J. et al. (2002) Community-acquired Klebsiella pneumoniae bacteremia: global differences in clinical patterns. Emerg. Infect. Dis., no. 8, pp. 160–166.
  10. European Centre for Disease Prevention and Control. Antimicrobial resistance (EARS-Net). ECDC. Annual Epidemiological Report for 2014. Stockholm: ECDC, 2018.
  11. Воронина О.Л., Кунда М.С., Рыжова Н.Н. и др. (2023) Геномные особенности резистентных изолятов Klebsiella pneumoniae, выделенных из кровяного русла и ликвора пациентов детского стационара // Журнал микробиологии, эпидемиологии и иммунобиологии. Т. 100 (6). С. 399–409. Voronina O.L., Kunda M.S., Ryzhova N.N. et al. (2023) Genomic features of resistant Klebsiella pneumoniae isolates isolated from the bloodstream and cerebrospinal fluid of children’s hospital patients. Journal of Microbiology, Epidemiology and Immunobiology, vol. 100 (6), pp. 399–409. (In Russ.)
  12. Белобородов В.Б., Голощапов О.В., Гусаров В.Г. и др. (2022) Методические рекомендации Российской некоммерческой общественной организации “Диагностика и антимикробная терапия инфекций, вызванных полирезистентными штаммами микроорганизмов” (обновление 2022 г.) // Вестник анестезиологии и реаниматологии. Т. 19 (2). С. 84–114. Beloborodov V.B., Goloshchapov O.V., Gusarov V.G. et al. (2022) Methodological recommendations of the Russian non-profit public organization “Diagnostics and antimicrobial therapy of infections caused by polyresistant strains of microorganisms” (update 2022). Bulletin of Anesthesiology and Intensive Care, vol. 19 (2), pp. 84–114. (In Russ.)
  13. Yao H., Qin S., Chen S. et al. (2018) Emergence of carbapenem-resistant hypervirulent Klebsiella pneumoniae. Lancet Infect. Dis., vol. 18 (1), 25.
  14. Gu D., Dong N., Zheng Z. et al. (2018) A fatal outbreak of ST11 car-bapenem-resistant hypervirulent Klebsiella pneumoniae in a Chinese hospital: a molecular epidemiological study. Lancet Infect. Dis., vol. 18 (1), pp. 37–46.
  15. Lam M.M.C., Wick R.R., Watts S.C. et al. (2021) A genomic surveillance framework and genotyping tool for Klebsiella pneumoniae and its related species complex. Nat. Commun., vol. 12, 4188.
  16. Бухарин О.В., Валышев А.В., Гильмутдинова Ф.Г. и др. (2006) Экология микроорганизмов человека / Отв. ред. О.В. Бухарин. Екатеринбург: УрО РАН. Bukharin O.V., Valyshev A.V., Gilmutdinova F.G. et al. (2006) Ecology of human microorganisms. Res. ed. O.V. Bukharin. Yekaterinburg: Ural Branch of the RAS. (In Russ.)
  17. Бухарин О.В. (1999) Персистенция патогенных бактерий. М.: Медицина. Bukharin O.V. (1999) Persistence of pathogenic bacteria. Moscow: Medicine. (In Russ.)
  18. Ragland S.A., Criss A.K. (2017) From bacterial killing to immune modulation: Recent insights into the functions of lysozyme. PLoS Pathog., vol. 13 (9), e1006512.
  19. Бухарин О.В., Иванова Е.В. (2023) Особенности персистенции индигенных штаммов бифидобактерий кишечника человека // Вестник РАН. № 6. С. 549–556. Bukharin O.V., Ivanova E.V. (2023) Persistence Features of Indigenous Strains of the Human Intestine Bifidobacteria. Herald of the Russian Academy of Sciences, no. 4, pp. 231–238. (In Russ.)
  20. Quinn P.J., Boldyrev A.A., Formazuyk V.E. (1992) Carnosine: its properties, functions and potential therapeutic applications. Mol. Aspects Med., vol. 13 (5), pp. 379–444.
  21. Сгибнев А.В. (2013) Про- и антиоксиданты как факторы формирования и регуляции симбиотических систем с участием прокариот // Автореф. … доктора биол. наук. 42 с. Sgibnev A.V. (2013) Pro- and antioxidants as factors of formation and regulation of symbiotic systems involving prokaryotes. Abstract for the degree of Doctor of Biological Sciences. 42 p. (In Russ.)
  22. Бухарин О.В., Сгибнев А.В., Черкасов С.В. (2014) Роль про- и антиоксидантов микроорганизмов в регуляции механизмов гомеостаза симбиоза (на модели вагинального биотопа) // Журнал микробиологии, эпидемиологии и иммунобиологии. № 3. C. 9–15. Bukharin O.V., Shibnev A.V., Cherkasov S.V. (2014) The role of pro- and antioxidants of microorganisms in the regulation of mechanisms of symbiosis homeostasis (on the model of a vaginal biotope). Journal of Microbiology, Epidemiology and Immunobiology, no. 3, pp. 9–15. (In Russ.)
  23. Xu T., Wang C., Zhang R. et al. (2015) Carnosine markedly ameliorates H9N2 swine influenza virus-induced acute lung injury. J. Gen. Virol., vol. 96 (10), pp. 2939–2950.
  24. Hipkiss A.R. (2020) COVID-19 and Senotherapeutics: Any Role for the Naturally-occurring Dipeptide Carnosine? Aging and disease, vol. 11 (4), pp. 737–741.
  25. Тихомирова Е.В., Корнилова З.Х., Оглоблина Т.А., Перельман М.И. (1993) Влияние карнозина на состояние внутриклеточного pH в культивируемых лёгочных эмбриональных фибробластах человека // Бюллетень экспериментальной биологии и медицины. Т. 116. С. 218–220. Tikhomirova E.V., Kornilova Z.Kh., Ogloblina T.A., Perel’man M.I. (1993) The effect of carnosine on the intracellular pH in cultured human embryonic lung fibroblasts. Biull. Eksp. Biol. Med., vol. 116 (8), pp. 218–220. (In Russ.)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies