ALTERNATIVE ENERGY AND ARTIFICIAL PHOTOSYNTHESIS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Limited reserves of fossil fuels and the negative impact of their combustion products on the environment are two pressing problems of our time. The development of alternative energy sources, among which solar energy is the most accessible, is considered as a possible solution. Acquisition of skills of its effective and environmentally friendly use by creating artificial photosynthetic systems imitating the processes of natural photosynthesis, as well as the use of artificial photosynthesis for the production of biofuels can contribute to a way out of the current situation.

About the authors

S. I. Allakhverdiev

K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences

Author for correspondence.
Email: suleyman.allakhverdiev@gmail.com
Russia, Moscow

References

  1. Nath K., Najafpour M.M., Voloshin R.A. et al. Photobiological hydrogen production and artificial photosynthesis for clean energy: from bio to nanotechnologies // Photosynthesis Research. 2015. V. 126 (2–3). P. 237–247.
  2. Antal T.K., Matorin D.N., Kukarskikh G.P. et al. Pathways of hydrogen photoproduction by immobilized Chlamydomonas reinhardtii cells deprived of sulfur // International Journal of Hydrogen Energy. 2014. V. 39. P. 18194–18203.
  3. Purchase R.L., De Groot H.J.M. Biosolar cells: Global artificial photosynthesis needs responsive matrices with quantum coherent kinetic control for high yield // Interface Focus. 2015. V. 5. P. 20150014.
  4. Rahman A., Farrok O., Haque Md.M. Environmental impact of renewable energy source based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic // Renewable and Sustainable Energy Reviews. 2022. V. 161. P. 112279.
  5. Nov Hydropower explained: hydropower and the environment. US Energy Information Administration, 2019. https://www.eia.gov/energyexplained/hydropower/ hydropower-and-the-environment.php (дата обращения 10 февраля 2020).
  6. Nazir M.S., Mahdi A.J., Bilal M. et al. Environmental impact and pollution-related challenges of renewable wind energy paradigm – a review // Science of the Total Environment. 2019. V. 683. P. 436–444.
  7. Nazir M.S., Ali N., Bilal M., Iqbal H.M. Potential environmental impacts of wind energy development: a global perspective // Current Opinion in Environmental Science and Health. 2020. V. 13. P. 85–90.
  8. May R., Nygård T., Falkdalen U. et al. Paint it black: efficacy of increased wind turbine rotor blade visibility to reduce avian fatalities // Ecology and Evolution. 2020. V. 10. P. 8927–8935.
  9. Bravi M., Basosi R. Environmental impact of electricity from selected geothermal power plants in Italy // Journal of Cleaner Production. 2014. V. 66. P. 301–308.
  10. Allakhverdiev S.I., Kreslavski V.D., Thavasi V. et al. Hydrogen photoproduction by use of photosynthetic organisms and biomimetic systems // Photochemical and Photobiological Sciences. 2009. V. 8. P. 148–156
  11. Tawalbeh M., Al-Othman A., Kafiah F. et al. Environmental impacts of solar photovoltaic systems: a critical review of recent progress and future outlook // Science of the Total Environment. 2021. V. 759. Article number 143528.
  12. Musazade E., Voloshin R., Brady N. et al. Biohybrid solar cells: Fundamentals, progress, and challenges // Journal of Photochemistry and Photobiology. C: Photochemistry Reviews. 2018. V. 35. P. 134–156.
  13. Hallenbeck P.C., Lazaro C.Z., Sagir E. Photosynthesis and hydrogen from photosynthetic microorganisms. Microalgal Hydrogen Production: Achievements and Perspectives / Seibert M. and Torzillo G., eds. European Society for Photobiology, 2018. Chapter 1. P. 3–30.
  14. Allakhverdiev S.I., Kreslavski V.D., Thavasi V. et al. Photosynthetic energy conversion: hydrogen photoproduction by natural and biomimetic systems / Mukherjee A., ed. Biomimetics, learning from nature. Croatia: In-Tech, Vukovar, 2010. P. 49–76.
  15. Ben-Shem A., Frolow F., Nelson N. Evolution of photosystem I – From symmetry through pseudosymmetry to asymmetry // FEBS Letters. 2004. V. 564 (3) P. 274–280.
  16. Voloshin R.A., Brady N.G., Zharmukhamedov S.K. et al. Influence of osmolytes on the stability of thylakoid based dye sensitized solar cells // International Journal of Energy Research. Wiley Online Library. 2019. V. 43 (14). P. 8878–8889.
  17. Voloshin R.A., Bedbenov V.S., Gabrielyan D.A. et al. Optimization and characterization of TiO2-based solar cell design using diverse plant pigments // International Journal of Hydrogen Energy. 2017. V. 42 (12). P. 8576–8585.
  18. Miyachi M., Ikehira S., Nishiori D. et al. Photocurrent Generation of Reconstituted Photosystem II on a Self-Assembled Gold Film // Langmuir. 2017. V. 33 (6). P. 1351–1358.
  19. Adam P., Heunemann F., Bussche Ch. et al. Hydrogen infrastructure – the pillar of energy transitions the practical conversion of long-distance gas networks to hydrogen operation // Whitepaper. 2020. V. 32. P. 1–25.
  20. Радченко Р.В., Мокрушин А.С., Тюльпа В.В. Водород в энергетике. Екатеринбург: Изд-во Урал. ун-та, 2014.
  21. da Silva Veras T., Mozer T.S., da Silva César A. Hydrogen: trends, production and characterization of the main process worldwide // International Journal of Hydrogen Energy. 2017. V. 42 (4). P. 2018–2033.
  22. Govindjee, Kern J.F., Messinger J., Whitmarsh J. Photosystem II // Encyclopedia of Life Sciences (ELS). Chichester: John Wiley & Sons, Ltd., 2010. P. 1–15.
  23. Аллахвердиев С.И. Горизонты искусственного фотосинтеза // Горизонты биофизики. Т. 2 / Под ред. А.Б. Рубина. М.–Ижевск: Институт компьютерных исследований, 2022. С. 9–47.
  24. Аллахвердиев С.И. Солнце в зелёной ячейке. Глобальная энергия. 2021. https://globalenergyprize.org/ru/2021/10/19/solnce-v-zelenoj-yachejke/ (дата обращения: 21.07.2023).
  25. Allakhverdiev S.I., Thavasi V., Kreslavski V.D. et al. Photosynthetic hydrogen production // Journal of Photochemistry and Photobiology: C. 2010. V. 11. P. 87–99.
  26. Najafpour M.M., Renger G., Hołyńska M. et al. Manganese Compounds as Water-Oxidizing Catalysts: From the Natural Water-Oxidizing Complex to Nanosized Manganese Oxide Structures // Chemical Reviews. 2016. V. 116 (5). P. 2886–2889.
  27. Климов В.В., Аллахвердиев С.И., Деметер Ш., Красновский А.А. Фотовосстановление феофитина в фотосистеме 2 хлоропластов в зависимости от окислительно-восстановительного потенциала среды // Докл. АН СССР. 1979. Т. 49. С. 227–230.
  28. Климов В.В., Аллахвердиев С.И., Красновский А.А. Сигнал ЭПР при фотовосстановлении феофитина в реакционных центрах фотосистемы 2 хлоропластов // Докл. АН СССР. 1979. Т. 249. С. 485–488.
  29. Allakhverdiev S.I., Klimov V.V. Photoreduction of NADP(+) in photosystem II of higher plants: requirement for manganese // Zeitschrift für Naturforschung: C. 1992. V. 47 (1–2). P. 57–62.
  30. Mal’tsev S.V., Allakhverdiev S.I., Klimov V.V., Krasnovsky A.A. Hydrogen evolution by subchloroplast preparations of photosystem II from pea and spinach // FEBS Letters. 1988. V. 240 (1–2). P. 1–5.
  31. Klimov V.V., Allakhverdiev S.I., Shuvalov V.A., Krasnovsky A.A. Effect of extraction and readdition of manganese on light reactions of photosystem II preparations // FEBS Letters. 1982. V. 148 (2). P. 307–312.
  32. Аллахвердиев С.И., Клеваник А.В., Климов В.В. и др. Определение числа атомов марганца, функционирующих в донорной части фотосистемы 2 // Биофизика. 1983. Т. 28. № 1. С. 5–8.
  33. Feizi H., Bagheri R., Song Z. et al. Cobalt/Cobalt Oxide Surface for Water Oxidation // ACS Sustainable Chemistry & Engineering. 2019. V. 7 (6). P. 6093–6105.
  34. Kalantarifar S., Allakhverdiev S.I., Najafpour M.M. Water oxidation by a nickel complex: new challenges and an alternative mechanism // International Journal of Hydrogen Energy. 2020. V. 45 (58). P. 33563–33573.
  35. Khosravi M., Feizi H., Haghighi B. et al. Photoelectrochemistry of manganese oxide/mixed phase titanium oxide heterojunction // New Journal of Chemistry. 2020. V. 44 (8). P. 3514–3523.
  36. Madadkhani S., Allakhverdiev S.I., Najafpour M.M. An iridium-based nanocomposite prepared from an iridium complex with a hydrocarbon-based ligand // New Journal of Chemistry. 2020. V. 44 (36). P. 15636–15645.
  37. Mehrabani S., Bikas R., Zand Z. et al. Water splitting by a pentanuclear iron complex // International Journal of Hydrogen Energy. 2020. V. 45 (35). P. 17434–17443.
  38. Najafpour M.M., Ghobadi M.Z., Sarvi B. et al. Polypeptide and Mn-Ca oxide: Toward a biomimetic catalyst for water-splitting systems // International Journal of Hydrogen Energy. 2016. V. 41 (12). P. 5504–5512.
  39. Najafpour M.M., Madadkhani S., Akbarian S. et al. A new strategy to make an artificial enzyme: Photosystem II around nanosized manganese oxide // Catalysis Science & Technology. 2017. V. 7. P. 4451–4461.
  40. Najafpour M.M., Madadkhani S., Akbarian S. et al. Links Between peptide and Mn oxide: Nano-sized manganese oxide embedded in a peptide matrix // New Journal of Chemistry. 2018. V. 42 (12). P. 10067–10077.
  41. Najafpour M.M., Mehrabani S., Bagheri R. et al. An aluminum/cobalt/iron/nickel alloy as a precatalyst for water oxidation // International Journal of Hydrogen Energy. 2018. V. 43 (4). P. 2083–2090.
  42. Safdari T., Akbari N., Valizadeh A. et al. Iron-nickel oxide: a promising strategy for water-oxidation // New Journal of Chemistry. 2020. V. 44 (4). P. 1517–1523.
  43. Najafpour M.M., Zaharieva I., Zand Z. et al. Water-oxidizing complex in Photosystem II: Its structure and relation to manganese-oxide based catalysts // Coordination Chemistry Reviews. 2020. V. 409. Article number 213183.
  44. Allakhverdiev S.I., Karacan M.S., Somer G. et al. Binuclear manganese (III) complexes as electron donors in D1/D2/cytochrome b559 preparations isolated from spinach photosystem II membrane fragments // Z. Naturforsch. C. 1994. V. 49 (9–10). P. 587–592.
  45. Allakhverdiev S.I., Karacan M.S., Somer G. et al. Reconstitution of the water-oxidizing complex in manganese-depleted photosystem II complexes by using synthetic binuclear manganese complexes // Biochemistry. 1994b. V. 33 (40). P. 12210–12214.
  46. Nagata T., Nagasawa T., Zharmukhamedov S. et al. Reconstitution of the water-oxidizing complex in manganese-depleted photosystem II preparations using synthetic binuclear Mn(II) and Mn(IV) complexes: production of hydrogen peroxide // Photosynthesis Research. 2007. V. 93. P. 133–138.
  47. Nagata T., Zharmukhamedov S.K., Khorobrykh A.A. et al. Reconstitution of the water-oxidizing complex in manganese-depleted photosystem II preparations using synthetic Mn-complexes: a fluorine-19 NMR study of the reconstitution process // Photosynthesis Research. 2008. V. 98. P. 277–284.
  48. Vitukhnovskaya L.A., Zharmukhamedov S.K., Najafpour M.M. et al. Electrogenic reactions in Mn-depleted photosystem II core particles inthe presence of synthetic binuclear Mn complexes // Biochemical and Biophysical Research Communications. 2018. V. 503 (1). P. 222–227.
  49. Mousazade Y., Najafpour M.M., Bagheri R. et al. A manganese(II) phthalocyanine under water-oxidation reaction: new findings // Dalton Transactions. 2019. V. 48 (32). P. 12147–12158.
  50. Chou L.Y., Liu R., He W. et al. Direct oxygen and hydrogen production by water splitting using a robust bioinspired manganese oxooligomer complex/tungsten oxide catalytic system // International Journal of Hydrogen Energy. 2012. V. 37. P. 8889–8896.
  51. Najafpour M.M., Salimi S., Madadkhani S. et al. Nanostructured manganese oxide on silica aerogel: a new catalyst toward water oxidation // Photosynthesis Research. 2016. V. 130 (1–3). P. 225–235.
  52. Maitra U., Lingampalli S.R., Rao C.N.R. Artificial photosynthesis and the splitting of water to generate hydrogen // Current Science. 2014. V. 106. P. 518–527.
  53. Bolatkhan K., Kossalbayev B.D., Zayadan B.K. et al. Hydrogen production from phototrophic microorga-nisms: Reality and perspectives // International Journal of Hydrogen Energy. 2019. V. 44 (12). P. 5799–5811.
  54. Бозиева А.М., Заднепровская Е.В., Аллахвердиев С.И. Получение биоводорода: последние достижения и современное состояние // Глобальная энергия. 2022. Т. 28 (4). С. 59–78.
  55. Sadvakasova A.K., Akmukhanova N.R., Bolatkhan K. et al. Search for new strains of microalgae-producers of lipids from natural sources for biodiesel production // International Journal of Hydrogen Energy. 2019. V. 44 (12). P. 5844–5853.
  56. Das D., Veziroglu T.N. Hydrogen production by biological processes: a survey of literature // International Journal of Hydrogen Energy. 2001. V. 26 (1). P. 13–28.
  57. Nagarajan D., Lee D.J., Kondo A., Chang J.S. Recent insights into biohydrogen production by microalgae – from biophotolysis to dark fermentation // Bioresource Technology. 2017. V. 227. P. 373–387.
  58. Antal T.K., Matorin D.N., Kukarskikh G.P. et al. Pathways of hydrogen photoproduction by immobilized Chlamydomonas reinhardtii cells deprived of sulfur // International Journal of Hydrogen Energy. 2014. V. 39. P. 18194–18203.
  59. Kossalbayev B.D., Tomo T., Zayadan B.K. et al. Determination of the potential of cyanobacterial strains for hydrogen production // International Journal of Hydrogen Energy. 2020. V. 45. P. 2627–2639.
  60. Taikhao S., Junyapoon S., Incharoensakdi A., Phunpruch S. Factors affecting biohydrogen production by unicellular halotolerant cyanobacterium Aphanothece halophytica // Journal of Applied Phycology. 2013. 25. P. 575–585.
  61. Li H., Zhang L., Shu L. et al. Sustainable photosynthetic H2-production mediated by artificial miRNA silencing of OEE2 gene in green alga Chlamydomonas reinhardtii // International Journal of Hydrogen Energy. 2015. V. 40 P. 5609–5616.
  62. Eroglu E., Melis A. Microalgal hydrogen production research // International Journal of Hydrogen Energy. 2016. V. 41. P. 12772–12798.
  63. Bandyopadhyay A., Stöckel J., Min H. et al. High rates of photobiological H2 production by a cyanobacterium under aerobic conditions // Nature Communications. 2010. V. 1. Article number 139.
  64. Kossalbayev B.D., Kakimova A.B., Bolatkhan K. et al. Biohydrogen production by novel cyanobacterial strains isolated from rice paddies in Kazakhstan // International Journal of Hydrogen Energy. 2022. V. 47. P. 16440–16453.
  65. Bozieva A.M., Khasimov M.Kh., Voloshin R.A. et al. New cyanobacterial strains for biohydrogen production // International Journal of Hydrogen Energy. 2023. V. 48 (21). P. 7569–7581.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (243KB)
3.

Download (414KB)
4.

Download (161KB)
5.

Download (492KB)

Copyright (c) 2023 С.И. Аллахвердиев

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies