CLOSED ECOLOGICAL SYSTEMS: FROM THE BIOSPHERE TO LIFE SUPPORT SYSTEMS AND BACK

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper provides a brief overview of the available facts and ideas about the nature of climate change. The problems of ecological research, which are becoming more acute in relation to biosphere research, are considered: this is the problem of data deficit and the problem of the uniqueness of ecosystems. The key difference between the biosphere and natural ecosystems is highlighted, which ensures the long-term, in the ultimate perspective infinite, existence of the biosphere – the existence of a balance of biogen cycles or the closure of the flows of substances. The advantages of laboratory closed ecological systems (CES) as tools for experimental and theoretical study of the biosphere are considered. The contribution of the most well-known CES (BIOS-3, Folsom microcosms, Biosphere-2, micro-CES) to the understanding of biospheric processes is discussed. The problems and paradoxes identified in the mathematical modeling of CESs (Vernadsky-Darwin paradox, limitations of models of rigid metabolism), which are closely related to the well-known ecological paradoxes of May and Hutchinson, are discussed. A flexible metabolism approach is proposed to reduce the severity of these paradoxes. The measures proposed within the framework of so-called “green initiative” are discussed from the position of “biosphere as a CES”. Among these measures are reducing the carbon footprint of pets, migration to electric vehicles and renewable energy sourcesб and carbon sequestration by trees. The seriousness of biosphere-climatic changes problem is emphasized, which cannot be resolved without accounting the closure of substance flows in the biosphere.

About the authors

S.I. Bartsev

Institute of Biophysics, Siberian Branch of the RAS, Federal Research Center “Krasnoyarsk Science Center
of the Siberian Branch of the RAS”

Email: bartsev@yandex.ru
Russia, Krasnoyarsk

A.G. Degermendzhi

Institute of Biophysics, Siberian Branch of the RAS, Federal Research Center “Krasnoyarsk Science Center
of the Siberian Branch of the RAS”

Author for correspondence.
Email: nn1947@yandex.ru
Russia, Krasnoyarsk

References

  1. Neukom R., Steiger N., Gómez-Navarro J.J. et al. No evidence for globally coherent warm and cold periods over the preindustrial Common Era // Nature. 2019. V. 571. P. 550–572.
  2. Marcott S.A. et al. A Reconstruction of Regional and Global Temperature for the Past 11,300 Years // Science. 2013. V. 339. P. 1198–1201.
  3. Mulvaney et al. Recent Antarctic Peninsula warming relative to Holocene climate and ice-shelf history // Nature. 2012. V. 489. P. 141–144.
  4. Барцев С.И., Дегерменджи А.Г., Ерохин Д.В. Глобальные обобщённые модели биосферы // Проблемы окружающей среды и природных ресурсов. 2003. № 2. С. 11–29.
  5. Барцев С.И., Дегерменджи А.Г., Ерохин Д.В. Глобальная минимальная модель многолетней динамики углерода в биосфере // Доклады АН. 2005. Т. 401 (2). С. 233–237.
  6. Bartsev S.I., Degermendzhi A.G., Erokhin D.V. Principle of the worst scenario in the modelling past and future of biosphere dynamics // Ecological Modelling. 2008. V. 216 (2). P. 160–171.
  7. Lenton T.M., Held H., Kriegler E. et al. Tipping Elements in the Earth’s Climate System // PNAS. 2008. V. 105 (6). P. 1786–1793.
  8. Steffen W. et al. Trajectories of the Earth System in the Anthropocene // PNAS. 2018. V. 115 (33). P. 8252–8259.
  9. Wunderling N., Staal A., Sakschewski B. et al. Recurrent droughts increase risk of cascading tipping events by outpacing adaptive capacities in the Amazon rainforest // PNAS. 2022. V. 119 (32). 11 p. e2120777119.
  10. Лернер А.Я. Начала кибернетики. М.: Наука, 1967.
  11. Гительзон И.И., Ковров Б.Г., Лисовский Г.М. и др. Экспериментальные экологические системы, включающие человека // Сб. Проблемы космической биологии. Т. 28. М.: Наука, 1975. С. 292–311.
  12. Folsome C.E., Hanson J.A. The emergence of materially closed system ecology // Ecosystem Theory and Application / Ed. by N. Polunin. N.Y.: John Wiley & Sons, 1986. P. 269–299.
  13. Brown M.J. Make a Tabletop Biosphere // Make. 2008. V. 10. P. 111–117.
  14. Allen J. Biosphere 2: The Human Experiment. Penguin books, A synergetic press, Inc., 1991.
  15. Nelson M., Dempster W., Alvarez-Romo N., MacCallum T. Atmospheric dynamics and bioregenerative technologies in a soil-based ecological life support system: initial results from Biosphere 2 // Adv. Space Res. 1994. V. 14 (11). P. 417–426.
  16. Ковров Б.Г. Искусственные микроэкосистемы с замкнутым круговоротом веществ как модель биосферы // Биофизика клеточных популяций и над-организменных систем. Сб. научных трудов. Новосибирск: Наука, 1992. С. 62–70.
  17. Barlow C., Volk T. Open systems living in a closed biosphere: a new paradox for the Gaia debate // BioSystems. 1990. V. 23 (4). P. 371–384.
  18. Bartsev S.I. Stoichiometric constraints and complete closure of long-term life support systems // Adv. Space Res. 2004. V. 34. P. 1509–1516.
  19. Барцев С.И., Дегерменджи А.Г., Сарангова А.Б., Дегерменджи Н.Н. Экологическая биофизика – горизонты развития // Горизонты биофизики. Т. 2. Под ред. А.Б. Рубина. М.–Ижевск: Институт компьютерных исследований, 2022. С. 209–257.
  20. May R.M. Stability in multi-species community models // Mathematical Biosciences. 1971. V. 12. P. 59–79.
  21. Ives A.R., Carpenter S.R. Stability and diversity of ecosystems // Science. 2007. V. 317. P. 58–62.
  22. Гаузе Г.Ф. Математический подход к проблемам борьбы за существование // Зоол. журн. 1933. № 12. С. 170–177.
  23. Дегерменджи А.Г., Печуркин Н.С., Фуряева А.В. Анализ взаимодействия двух микробных популяций по типу комменсализма в непрерывной культуре // Экология. 1978. № 2. С. 91–94.
  24. Дегерменджи А.Г., Печуркин Н.С., Тушкова Г.И., Фуряева А.В. Механизм устойчивого сосуществования диплоидных и гаплоидных дрожжей Saccharomyces cerevisiae в проточной культуре // Известия СО АН СССР. Серия “Биологические науки”. 1979. № 5 (1). С. 62–68.
  25. Hutchinson G.E. The paradox of the plankton // The American naturalist. 1961. V. 95 (882). P. 137–145.
  26. Levine J.M., HilleRisLambers J. The importance of niches for the maintenance of species diversity // Nature. 2009. V. 461. P. 254–257.
  27. Салтыков М.Ю., Барцев С.И., Ланкин Ю.П. Зависимость устойчивости моделей замкнутых экосистем от числа видов // Журнал СФУ. Серия “Биология”. 2011. № 4. С. 197–208.
  28. Saltykov M.Yu., Bartsev S.I., Lankin Yu.P. Stability of Closed Ecology Life Support Systems (CELSS) models as dependent upon the properties of metabolism of the described species // Advances in Space Research. 2012. V. 49 (2). P. 223–229.
  29. Bartsev S., Degermendzhi A. The Evolutionary Mechanism of Formation of Biosphere Closure // Mathematics. 2023 V. 11 (14) Article number 3218. https://doi.org/10.3390/math11143218
  30. Bartsev S.I., Degermendzhi A.G., Okhonin V.A., Saltykov M.Y. An Integrated Approach to the Assessment of an Ecological Impact of Industrial Products and Processes // Procedia Environmental Sciences. 2012. V. 13. P. 837–846.
  31. Bartsev S.I., Degermendzhi A.G., Sarangova A.B. Stability of the Biosphere and Sustainable Development: a Challenge to Biospherics // Journal of Siberian Federal University. Biology. 2017. V. 10 (2). P. 134–152.
  32. АКРА. Принципы присвоения ESG-рейтингов нефинансовым компаниям. Тематическое приложение 1. 47 с.
  33. О полигонах для разработки и испытаний технологии контроля углеродного баланса. Приказ Мин-обрнауки России № 74 от 5 февраля 2021 г. https://base.garant.ru/400805179/?ysclid=lladhdu47w508707143 (дата обращения 14.08.2023).
  34. Барцев С.И., Дегерменджи А.Г. и др. Влияние неопределённости оценки параметров минимальной биосферной модели на прогноз биосферной динамики // Изв. Самарского НЦ РАН. 2009. № 11 (1–7). С. 1413–1418.
  35. Bartsev S.I., Degermendzhi A.G., Belolipetsky P.V. Carbon Cycle Modeling and Principle of the Worst Scenario // Jordan F., Jorgensen S.E. (eds). Models of the Ecological Hierarchy: From Molecules to the Ecosphere // Elsevier B.V. 2012. P. 447–458.
  36. Барцев С.И., Межевикин В.В., Охонин В.А. Принцип замкнутости и критерии оптимального природопользования и устойчивого развития // Химия в интересах устойчивого развития. 2001. № 9. С. 805–814.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (469KB)
3.

Download (37KB)

Copyright (c) 2023 С.И. Барцев, А.Г. Дегерменджи

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies