Formation of pentameria and axial symmetry in the evolution of echinoderms

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The formation of pentaradial symmetry in the evolution of echinoderms was based on the possibility of the middle–left coelom to terminally forward growth along the anteroposterior axis and the appearance of a second growth vector along the left–right axis during the replication of the formed ambulacra. Both growth vectors were realized into the pentamerism of modern echinoderms due to the development of coelom asymmetry and subsequent torsion associated with the attachment of the larva to the ground by the anterior end of the body. In this process, the molecular genetic mechanisms of anteroposterior growth and left–right regulation, common to bilateria, and associated with the genes of the Wnt, BMP, Nodal signaling cascades, and Hox system genes, were probably used together. In the process of replication of channels extending from the ambulacral ring, the emerging ambulacral system was the organizer of the symmetry of the skeleton and the nervous and muscular systems. Replication in many fossil echinoderms ended on the three channels extending directly from the ambulacral ring. In crinoids, sea urchins, sea stars, brittle stars, and holothurians, the second stage of the formation of a more perfect five-ray symmetry of the ambulacral ring with five radial canals extending from it appeared, associated with a shift in ontogenesis of the branch point to the early stages of hydrocoel development.

About the authors

S. V. Rozhnov

Borissiak Paleontological Institute, Russian Academy of Sciences

Author for correspondence.
Email: vestnik.ran@yandex.ru
Moscow, Russia

References

  1. Hyman L. The Invertebrates. V. 5. Phylum Echinodermata. New York: Mc-Graw-Hill, 1955.
  2. Rozhnov S.V. Development of symmetry and asymmetry in the early evolution of the echinoderms // Paleontological journal. 2012. V. 46. № 8. P. 780–792.
  3. Rozhnov S.V. Symmetry of echinoderms: From initial bilaterally-asymmetric metamerism to pentaradiality // Natural Science. 2014. V. 6. № 4. P. 171–183. https://doi.org/10.4236/ns.2014.64021
  4. Isaeva V.V., Rozhnov S.V. Transformation of the Ancestral Body Plan and Axial Growth in Echinoderms: Ontogenetic and Paleontological Data // Paleontological Journal. 2022. V. 56. No. 8. P. 863–886.
  5. Иванова-Казас О.М. Сравнительная эмбриология беспозвоночных животных. Иглокожие и полухордовые. М.: Наука, 1978.
  6. Udagawa S., Nagai A., Kikuchi M. et al. 2022. The pentameric hydrocoel lobes organize adult pentameral structures in a sea cucumber, Apostichopus japonicas // Developmental Biology. 2022. № 492. P. 71–78. https://doi.org/10.1016/j.ydbio.2022.09.002
  7. Rozhnov S.V. Two Coils in the Morphology of Myelodactylids (Crinoidea, Disparida): the Morphogenetic Basis of Their Formation and Adaptation Potential // Paleontological Journal. 2021. V. 55. № 9. P. 63–82.
  8. Rozhnov S.V. Crookedness of the stem and crown of pelmatozoan echinoderms as resulting from different kinds of heterochrony // Echinoderm Res. / Carnevali, M.D.C. and Bonasoro, F., Eds. Rotterdam: A.A. Balkema, 1998. P. 385–390.
  9. Rozhnov S.V. Morphogenesis and evolution of crinoids and other pelmatozoan echinoderms in the Early Paleozoic // Paleontological Journal. 2002. V. 36. Suppl. 6. P. S525–S674.
  10. Rozhnov S.V. The anteroposterior axis in echinoderms and displacement of the mouth in their phylogeny and ontogeny // Biology Bulletin. 2012. V. 39. № 2. P. 162–171.
  11. Rozhnov S.V. Solutans (Echinoderms): Evolution Frozen between Torsion and Pentaradiality // Paleontological Journal. 2022. V. 56. № 11. P. 1306–1321.
  12. Engle S. Ultrastructure and development of the body cavities in Antedon bifida (Pennant, 1777) (Comatulida, Crinoidea). Unpubl. PhD thesis, 2013. http://edocs.fu-ber-lin.de/diss/receive/FUDISS_thesis_000000040355
  13. Amemiya S., Taku H., Masaaki Y. et al. Early stalked stages in ontogeny of the living isocrinid sealily Metacrinus rotundus // Acta Zool. (Stockholm). 2016. V. 97. № 1. P. 102–116.
  14. Rozhnov S.V. Ordovician Paracrinoids from the Baltic: Key Problems of Comparative Morphology of Pelmatozoan Echinoderms // Paleontological Journal. 2017. V. 51. № 6. P. 643–662.
  15. Paul C.R.C., Hotchkiss F. Origin and significance of Lovén's Law in echinoderms // Journal of Paleontology. 2020. V. 94. № 6. P. 1–14.
  16. Sumrall C.D., Wray G.A. Ontogeny in the fossil record: Diversification of body plans and the evolution of “aberrant” symmetry in Paleozoic echinoderms // Paleobiology. 2007. V. 33. № 1. P. 149–163.
  17. Tsuchimoto J. Expression Patterns of Hox Genes in the Direct-Type Developing Sand Dollar Peronella japonica: Insights into the Evolution of Echinoderms // Kanazawa University Graduate School of Natural Sciences Doctoral Dissertation, 2012. http://hdl.handle.net/2297/34907
  18. Tsuchimoto J., Yamaguchi M. Hox expression in the direct-type developing sand dollar Peronella japonica // Devel. Dynamics. 2014. V. 243. № 8. https://doi.org/10.1002/dvdy.24135
  19. Adachi S., Niimi I., Sakai Y. et al. Anteroposterior molecular registries in ectoderm of the echinus rudiment // Devel. Dynamics. 2018. V. 247. P. 1297–1307.
  20. Isaeva V.V., Rozhnov S.V. Evolutionary transformations of the metazoan body plan: Genomic-morphogenetic correlations // Paleontological Journal. 2021. V. 55. № 7. P. 97–110.
  21. Isaeva V.V., Kasyanov N.V. Symmetry transformations in metazoan evolution and development // Symmetry. 2021. V. 13. № 160. https://doi.org/10.3390/sym13020160
  22. Minelli A. EvoDevo and its significance for animal evolution and phylogeny // Evolutionary Developmental Biology of Invertebrates. 2015. V. 1 / Wanninger A., ed. Wien: Springer, 2015. P. 1–24.
  23. Byrne M., Martinez P., Morris V. Evolution of a pentameral body plan was not linked to translocation of anterior Hox genes: the echinoderm HOX cluster revisited // Evol. Devel. 2016. P. 1–7. https://doi.org/10.1111/ede.12172
  24. Omori A., Kikuchi M., Kondo M. Larval and adult body axes in echinoderms // Reproductive and Developmental Strategies: The Continuity of Life / Kobayashi K., Kitano T., Iwao Y., and Kondo M., eds. Tokyo: Springer Japan KK, 2018. P. 760–789.
  25. Cameron R.A., Rowen L., Nesbitt R. et al. Unusual gene order and organization of the sea urchin Hox cluster // J. Exp. Zool. B. Mol. Dev. Evol. 2006. № 306B. P. 45–58.
  26. Peterson K.J., Arenas-Mena C., Davidson E.H. The A/P axis in echinoderm ontogeny and evolution: evidence from fossils and molecules // Evol. Dev. 2000. № 2. P. 93–101.
  27. Mooi R., David B. Radial symmetry, the anterior/posterior axis, and echinoderm Hox genes // Annu. Rev. Ecol. Evol. S. 2008. № 39. P. 43–62.
  28. David B., Mooi R. How Hox genes can shed light on the place of echinoderms among the deuterostomes // EvoDevo. 2014. № 5: 22. P. 1–19. https://doi.org/10.1186/2041-9139-5-22
  29. Smith A.B., Zamora S. Cambrian spiral-plated echinoderms from Gondwana reveal the earliest pentaradial body plan // Proc. R. Soc. B. 2013. № 280: 20131197. https://doi.org/10.1098/rspb.2013.1197
  30. Ubaghs G. Stylophora // Treatise on Invertebrate Paleontology: Part S. Echinodermata / Moore R.C., ed. Lawrence: Geol. Soc. Am., Boulder. 1968. P. S495–S565.
  31. Jefferies R.P.S. The ancestry of the vertebrates. London: British Museum (Natural History), 1986.
  32. Lefebvre B., Guensburg T.E., Martin T.L.O. et al. Exceptionally preserved soft parts in fossils from the Lower Ordovician of Morocco clarify stylophoran affinities within basal deuterostomes // Geobios. 2019. V. 52. № 1. P. 27–36.
  33. Rozhnov S.V., Parsley R.L. A new cornute (Homalozoa: Echinodermata) from the uppermost Middle Cambrian (Stage 3, Furongian) from Northern Iran: Its systematics and functional morphology // Paleontological Journal. 2017. V. 51. № 5. P. 500–509.
  34. Малахов В.В. Проблема основного плана строения в различных группах вторичноротых животных // Журнал общей биологии. 1977. Т. 38. № 4. С. 485–499.
  35. Slack J.M.W., Holland P.W.H., Graham C.F. The zootype and phylotypic stage // Monthly Nature. V. 1. № 2. P. 21–23.
  36. Rahman I.A., Stewart S.E., Zamora S. The youngest ctenocystoids from the Upper Ordovician of the United Kingdom and the evolution of the bilateral body plan in echinoderms // Acta Palaeontologica Polonica. 2015. V. 60. № 1. P. 39–48.
  37. Zamora S., Rahman I., Smith A.B. Plated Cambrian bilaterians reveal the earliest stages of echinoderm evolution // PLoS ONE. 2012. № 7. e38296. https://doi.org/10. 1371/journal.pone.0038296
  38. Byrne M., Koop D., Strbenac D. et al. Transcriptomic analysis of Nodal- and BMP-associated genes during development to the juvenile seastar in Parvulastra exigua (Asterinidae) // Marine Genomics. 2021. № 59,100857. P. 2–6. https://doi.org/10.1016/j.margen.2021.100857

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (201KB)
3.

Download (274KB)
4.

Download (937KB)
5.

Download (180KB)
6.

Download (829KB)

Copyright (c) 2023 С.В. Рожнов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies