ANTITUMOR DRUG BASED ON THE GENE-MODIFIED VACCINIA VIRUS VV-GMCSF-Lact

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Virotherapy, or therapy with oncolytic viruses, is one of the most rapidly developing approaches to the treatment of a wide range of solid tumors. The article is devoted to the development and study of the properties of the first domestic drug based on recombinant vaccinia virus. The recombinant virus VV-GMCSF-Lact was engineered from Lister strain (L-IVP) vaccinia virus. The cytotoxic activity and antitumor efficacy of the virus against human tumor cells of various tissue origins were shown on cell cultures and tumor models. The drug has successfully passed preclinical studies as a drug against human breast cancer, including a triple negative phenotype. The drug was proven to be safe, well tolerated and pharmacologically effective. It is currently in Phase I clinical trials to study safety, tolerability and pharmacokinetics in patients with relapsed and/or refractory metastatic breast cancer. VV-GMCSF-Lact is the first Russian antitumor oncolytic virus which received the permission from the Russian Ministry of Health to conduct clinical trials.

About the authors

E. V. Kuligina

Institute of Chemical Biology and Fundamental Medicine SB RAS; LLC “Oncostar”

Email: kuligina@niboch.nsc.ru
Russia, Novosibirsk; Russia, Moscow region, Skolkovo

V. A. Richter

Institute of Chemical Biology and Fundamental Medicine SB RAS

Email: richter@niboch.nsc.ru
Russia, Novosibirsk

V. V. Vlassov

Institute of Chemical Biology and Fundamental Medicine SB RAS

Author for correspondence.
Email: vvlassov@mail.ru
Russia, Novosibirsk

References

  1. Lauer U.M., Beil J. Oncolytic viruses: challenges and considerations in an evolving clinical landscape // Future Oncol. 2022. V. 18. P. 2627–2766.
  2. Li K., Zhao Y., Hu X. et al. Advances in the clinical development of oncolytic viruses // Am. J. Transl. Res. 2022. V. 14 (6). P. 4192–4206.
  3. Yun C.O., Hong J., Yoon A.R. Current clinical landscape of oncolytic viruses as novel cancer immunotherapeutic and recent preclinical advancements // Front. Immunol. 2022. V. 13. 953410.
  4. Lin D., Shen Y., Liang T. Oncolytic virotherapy: basic principles, recent advances and future directions // Signal Transduct. Target Ther. 2023. V. 8 (1). 156.
  5. Pol J., Kroemer G., Galluzzi L. First oncolytic virus approved for melanoma immunotherapy // OncoImmunology. 2015. V. 5. e1115641.
  6. Liang M. Oncorine, the World First Oncolytic Virus Medicine and its Update in China // Curr. Cancer Drug Targets. 2018. V. 18 (2). P. 171–176.
  7. Hietanen E., Koivu M.K.A., Susi P. Cytolytic Properties and Genome Analysis of Rigvir® Oncolytic Virotherapy Virus and Other Echovirus 7 Isolates // Viruses. 2022. V. 14 (3). 525.
  8. Mastrangelo M.J., Maguire H.C., Lattime E.C. Intralesional vaccinia/GM-CSF recombinant virus in the treatment of metastatic melanoma // Adv. Exp. Med. Biol. 2000. V. 465. P. 391–400.
  9. Liu T.C., Hwang T., Park B.H. et al. The targeted oncolytic poxvirus JX-594 demonstrates antitumoral, antivascular, and anti-HBV activities in patients with hepatocellular carcinoma // Mol. Ther. 2008. V. 16. P. 1637–1642.
  10. Heo J., Reid T., Ruo L. et al. Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer // Nat. Med. 2013. V. 19. P. 329–336.
  11. Parato K.A., Breitbach C.J., Le Boeuf F. et al. The oncolytic poxvirus JX-594 selectively replicates in and destroys cancer cells driven by genetic pathways commonly activated in cancers // Mol. Ther. 2012. V. 20. P. 749–758.
  12. Hou W., Chen H., Rojas J. et al. Oncolytic vaccinia virus demonstrates antiangiogenic effects mediated by targeting of VEGF // Int. J. Cancer. 2014. V. 135. P. 1238–1246.
  13. Chan W.M., McFadden G. Oncolytic Poxviruses // Annu. Rev. Virol. 2014. V. 1. P. 119–141.
  14. Zeh H.J., Downs-Canner S., McCart J.A. et al. First-in-man study of western reserve strain oncolytic vaccinia virus: safety, systemic spread, and antitumor activity // 2015. Mol. Ther. V. 23. P. 202–214.
  15. Downs-Canner S., Guo Z.S., Ravindranathan R. et al. Phase 1 Study of Intravenous Oncolytic Poxvirus (vvDD) in Patients with Advanced Solid Cancers // Mol. Ther. 2016. V. 24 (8). P. 1492–1501.
  16. Zonov E., Kochneva G., Yunusova A. et al. Features of the antitumor effect of vaccinia virus Lister Strain // Viruses. 2016. V. 8 (1). 20.
  17. Semenov D.V., Fomin A.S., Kuligina E.V. et al. Recombinant analogs of a novel milk pro-apoptotic peptide, lactaptin, and their effect on cultured human cells // Protein J. 2010. V. 29. P. 174–180.
  18. Koval O.A., Fomin A.S., Kaledin V.I. et al. A novel pro-apoptotic effector lactaptin inhibits tumor growth in mice models // Biochimie. 2012. V. 94. P. 2467–2474.
  19. Fomin A.S., Koval’ O.A., Semenov D.V. et al. The analysis of biochemical markers of MCF-7 cells apoptosis induced by recombinant analog of lactaptin // Bioorg. Khim. 2012. V. 38. P. 92–98.
  20. Koval O.A., Sakaeva G.R., Fomin A.S. et al. Sensitivity of endometrial cancer cells from primary human tumor samples to new potential anticancer peptide lactaptin // J. Cancer Res. Ther. 2015. V. 11. P. 345–351.
  21. Koval O.A., Tkachenko A.V., Fomin A.S. et al. Lactaptin induces p53-independent cell death associated with features of apoptosis and autophagy and delays growth of breast cancer cells in mouse xenografts // PLoS One. 2014. V. 9. e93921.
  22. Kumar A., Taghi Khani A., Sanchez Ortiz A., Swaminathan S. GM-CSF: A Double-Edged Sword in Cancer Immunotherapy // Front. Immunol. 2022. V. 13.
  23. Kochneva G., Sivolobova G., Tkacheva A. et al. Engineering of double recombinant vaccinia virus with enhanced oncolytic potential for solid tumor virotherapy // Oncotarget. 2016. V. 7. P. 74171–74188.
  24. Кочнева Г.В., Ткачёва А.В., Сиволобова Г.Ф. и др. Противоопухолевый потенциал рекомбинантного штамма вируса осповакцины, продуцирующего секретируемый химерный белок, состоящий из гранулоцитарно-макрофагального колониестимулирующего фактора человека и онкотоксического белка лактаптина // Биофармацевтический журнал. 2017. № 1. С. 11–21.
  25. Vasileva N., Ageenko A., Dmitrieva M. et al. Double recombinant vaccinia virus: a candidate drug against human glioblastoma // Life. 2021. V. 11. P. 1084.
  26. Кочнева Г.В., Гражданцева А.А., Сиволобова Г.Ф. и др. Модель искусственного метастазирования эпидермоидной карциномы человека А431 на мышах линии nude для исследования онколитической активности вируса осповакцины // Вавиловский журнал генетики и селекции. 2015. № 4. С. 480–486.
  27. Koval O., Kochneva G., Tkachenko A. et al. Recombinant vaccinia viruses coding transgenes of apoptosis-inducing proteins enhance apoptosis but not immunogenicity of infected tumor cells // BioMed Research International. 2017. V. 2017. 3620510.
  28. Dymova M.A., Kichkailo A.S., Kuligina E.V., Richter V.A. Aptamers enhance oncolytic viruses’ antitumor efficacy // Pharmaceutics. 2023. V. 15. 151.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (777KB)
3.

Download (354KB)
4.

Download (24KB)
5.

Download (50KB)

Copyright (c) 2023 Е.В. Кулигина, В.А. Рихтер, В.В. Власов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies