PRIONS AND AMYLOIDS AS SPATIAL TEMPLATES OF THE PROTEOME

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Until recently, studies of amyloids were aimed exclusively at revealing their role in the occurrence of dangerous diseases in humans and animals. However, they are widely distributed in nature and are involved in the regulation of essential vital processes in representatives of all three domains of the living world: archaea, bacteria and eukaryotes. The question of the biological significance of the prions – a special class of amyloids, is still under discussion. The discovery of new functional amyloids became possible due to the development of the bioinformatic and proteomic methods for identification of amyloid-forming proteins. The review describes the way from the study of pathological amyloid structures to the investigation of adaptive amyloids in bacteria, plants, and animals. The importance of the amyloid structure, based on the principle of conformation template copying, as one of the most important forms of supramolecular organization of proteins is shown.

About the authors

S. G. Inge-Vechtomov

St. Petersburg State University; Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences

Email: ingevechtomov@gmail.com
Russia, St. Petersburg; Russia, St. Petersburg

A. P. Galkin

St. Petersburg State University; Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences

Email: a.galkin@spbu.ru
Russia, St. Petersburg; Russia, St. Petersburg

G. A. Zhouravleva

St. Petersburg State University

Email: g.zhuravleva@spbu.ru
Russia, St. Petersburg

A. A. Nizhnikov

St. Petersburg State University; All-Russian Research Institute of Agricultural Microbiology

Email: a.nizhnikov@spbu.ru
Russia, St. Petersburg; Russia, Pushkin

S. P. Zadorsky

St. Petersburg State University; Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences

Author for correspondence.
Email: s.zadorsky@spbu.ru
Russia, St. Petersburg; Russia, St. Petersburg

References

  1. Нижников А.А., Антонец К.С., Инге-Вечтомов С.Г. Амилоиды: от патогенеза к функции // Биохимия. 2015. № 9. С. 1356–1375.
  2. Инге-Вечтомов С.Г. От хромосомной теории к матричному принципу // Генетика. 2015. № 4. С. 397–408.
  3. Kushnirov V.V., Dergalev A.A., Alieva M.K., Alexandrov A.I. Structural bases of prion variation in yeast // Int. J. Mol. Sci. 2022. № 23 (10). 5738.
  4. Crick F. Central dogma of molecular biology // Nature. 1970. V. 227. P. 561–563.
  5. Андрейчук Ю.В., Задорский С.П., Жук А.С. и др. Связь матричных процессов I и II рода: амилоиды и стабильность генома // Молекулярная биология. 2020. № 5. С. 750–775.
  6. Prusiner S.B., Scott M.R. Genetics of prions // Annu. Rev. Genet. 1997. V. 31. P. 139–75.
  7. Chiti F., Dobson C.M. Protein misfolding, amyloid formation, and human disease: a summary of progress over the last decade // Annu. Rev. Biochem. 2017. V. 86. P. 27–68.
  8. Галкин А.П., Велижанина М.Е., Сопова Ю.В. и др. Прионы и неинфекционные амилоиды млекопитающих – сходства и отличия // Биохимия. 2018. № 10. С. 1476–1489.
  9. Otzen D., Riek R. Functional Amyloids // Cold Spring Harb. Perspect. Biol. 2019. № 11 (12). a033860.
  10. Sergeeva A.V., Galkin A.P. Functional amyloids of eukaryotes: criteria, classification, and biological significance // Curr. Genet. 2020. № 5. P. 849–866.
  11. Horwich A.L., Weissman J.S. Deadly conformations – protein misfolding in prion disease // Cell. 1997. № 4. P. 499–510.
  12. Maury C.P.J. Origin of life. Primordial genetics: Information transfer in a pre-RNA world based on self-replicating beta-sheet amyloid conformers // J. Theoret. Biol. 2015. V. 382. P. 292–297.
  13. Galkin A.P., Sysoev E.I. Stress response is the main trigger of sporadic amyloidoses // Int. J. Mol. Sci. 2021. № 22 (8). 4092.
  14. Ter-Avanesyan M.D., Kushnirov V.V. Structure and replication of yeast prions // Cell. 1998. № 1. P. 13–16.
  15. Heikenwalder M., Julius C., Aguzzi A. Prions and peripheral nerves: a deadly rendezvous // J. Neurosci. Res. 2007. V. 85. P. 2714–2725.
  16. Wickner R.B., Edskes H.K., Son M. et al. Yeast prions compared to functional prions and amyloids // J. Mol. Biol. 2018. № 20. P. 3707–3719.
  17. Liebman S.W., Chernoff Y.O. Prions in yeast // Gene-tics. 2012. № 4. P. 1041–1072.
  18. Cox B., Tuite M. The life of [PSI] // Curr. Genet. 2018. № 1. P. 1–8.
  19. Inge-Vechtomov S., Zhouravleva G., Philippe M. Euka-ryotic release factors (eRFs) history // Biol. Cell. 2003. V. 95. P. 195–209.
  20. Kisselev L.L., Frolova L.Y. Termination of translation in eukaryotes: new results and new hypotheses // Biochemistry. 1999. № 1. P. 8–16.
  21. Trubitsina N., Zemlyanko O., Moskalenko S., Zhouravleva G. From past to future: suppressor mutations in yeast genes encoding translation termination factors // Bio. Comm. 2019. № 2. P. 89–109.
  22. Inge-Vechtomov S., Zhouravleva G., Chernoff Y. Biolo-gical roles of prion domains // Prion. 2007. V. 4. P. 228–235.
  23. Журавлёва Г.А., Бондарев С.А., Землянко О.М., Москаленко С.Е. Роль белков, взаимодействующих с факторами терминации трансляции eRF1 и eRF3, в регуляции трансляции и прионизации // Молекулярная биология. 2022. № 2. С. 206–226.
  24. Derkatch I.L., Liebman S.W. Prion-prion interactions // Prion. 2007. № 3. P. 161–169.
  25. Галкин А.П., Миронова Л.Н., Журавлёва Г.А., Инге-Вечтомов С.Г. Прионы дрожжей, амилоидозы млекопитающих и проблема протеомных сетей // Генетика. 2006. № 11. С. 1–13.
  26. Nizhnikov A.A., Ryzhova T.A., Volkov K.V. et al. Interaction of Prions Causes Heritable Traits in Saccharomyces cerevisiae // PLOS Genetics. 2016. № 12 (12). e1006504.
  27. Galkin A.P. Prions and the concept of polyprionic inheritance // Curr. Genet. 2017. № 5. P. 799–802.
  28. Barbitoff Y.A., Matveenko A.G., Zhouravleva G.A. Differential interactions of molecular chaperones and yeast prions // J. Fungi. 2022. № 8 (2). 122.
  29. Matveenko A.G., Barbitoff Yu.A., Jay-Garcia L.M. et al. Differential effects of chaperones on yeast prions: CURrent view // Current Genetics. 2017. № 2. P. 317–325.
  30. Eaglestone S.S., Cox B.S., Tuite M.F. Translation termination efficiency can be regulated in Saccharomyces cerevisiae by environmental stress through a prion-mediated mechanism // EMBO J. 1999. № 7. P. 1974–1981.
  31. Shorter J., Lindquist S. Prions as adaptive conduits of memory and inheritance // Nat. Rev. Genet. 2005. V. 6. P. 435–450.
  32. Daskalov A., Saupe S.J. As a toxin dies a prion comes to life: A tentative natural history of the [Het-s] prion // Prion. 2015. № 3. P. 184–189.
  33. Michelitsch M.D., Weissman J.S. A census of glutamine/asparagine-rich regions: implications for their conserved function and the prediction of novel prions // Proc. Nat. Acad. Sci. 2000. V. 97. P. 11910–11915.
  34. Navarro S., Ventura S. Computational methods to predict protein aggregation // Curr. Opin. Struct. Biol. 2022. № 73. 102343.
  35. Belashova T.A., Valina A.A., Sysoev E.I. et al. Search and identification of amyloid proteins // Methods Protoc. 2023. № 6 (1). 16.
  36. Sopova J.V., Koshel E.I., Belashova T.A. et al. RNA-binding protein FXR1 is presented in rat brain in amyloid form // Sci. Rep. 2019. № 9 (1). 18983.
  37. Chapman M.R. Role of Escherichia coli curli operons in directing amyloid fiber formation // Science. 2002. V. 295. P. 851–855.
  38. Kosolapova A.O., Antonets K.S., Belousov M.V., Nizhnikov A.A. Biological functions of prokaryotic amyloids in interspecies interactions: Facts and assumptions // Int. J. Mol. Sci. 2020. № 21 (19). 7240.
  39. Jamal M., Ahmad W., Andleeb S. et al. Bacterial biofilm and associated infections // Journal of the Chinese Medical Association. 2018. № 1. P. 7–11.
  40. Kosolapova A.O., Belousov M.V., Sulatskaya A.I. et al. Two novel amyloid proteins, RopA and RopB, from the root nodule bacterium Rhizobium leguminosarum // Biomolecules. 2019. № 9 (11). 694.
  41. Kosolapova A.O., Belousov M.V., Sulatsky M.I. et al. RopB protein of Rhizobium leguminosarum bv. viciae adopts amyloid state during symbiotic interactions with pea (Pisum sativum L.) // Front. Plant. Sci. 2022. № 13. 1014699.
  42. Antonets K.S., Nizhnikov A.A. Predicting amyloidogenic proteins in the proteomes of plants // Int. J. Mol. Sci. 2017. № 18 (10). 2155.
  43. Antonets K.S., Belousov M.V., Sulatskaya A.I. et al. Accumulation of storage proteins in plant seeds is mediated by amyloid formation // PLOS Biol. 2020. № 18. e3000564.
  44. Maji S.K., Perrin M.H., Sawaya M.R. et al. Functional amyloids as natural storage of peptide hormones in pituitary secretory granules // Science. 2009. V. 325. P. 328–332.
  45. Fowler D.M., Koulov A.V., Alory-Jost C. et al. Functional amyloid formation within mammalian tissue // PLoS Biol. 2006. № 4. e6.
  46. Velizhanina M.E., Galkin A.P. Amyloid properties of the FXR1 protein are conserved in evolution of vertebrates // Int. J. Mol. Sci. 2022. № 23 (14). 7997.

Copyright (c) 2023 С.Г. Инге-Вечтомов, А.П. Галкин, Г.А. Журавлёва, А.А. Нижников, С.П. Задорский

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies