GENE TAG7 AND ITS TRANSCRIPT TAG7 PROTEIN: PERSPECTIVES OF MEDICAL APPLICATIONS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Tag7 protein is a multifunctional protein with antitumor and anti-inflammatory effects. The interaction of Tag7 with the TREM-1 receptor on monocytes leads to the appearance of lymphocytes that kill tumor cells. The Tag7-Hsp70 complex binds to the TNFR1 receptor, causing cell death in a number of tumors through apoptosis and necroptosis. The Tag7-Mts1 complex interacts with the CCR5 receptor and attracts cytotoxic lymphocytes to the tumor. The interaction of Tag7 itself with TNFR1 and TREM-1 receptors prevents the binding of other ligands to this receptor, which gives an anti-inflammatory effect. Peptides imitating different Tag7 activities have been identified in Tag7. The results obtained allow us to count on possible applications of the Tag7 protein in the treatment of oncological and autoimmune diseases.

About the authors

D. V. Yashin

Institute of Gene Biology of RAS

Author for correspondence.
Email: yashin_co@mail.ru
Russia, Moscow

L. P. Sashchenko

Institute of Gene Biology of RAS

Author for correspondence.
Email: sashchenko@genebiology.ru
Russia, Moscow

G. P. Georgiev

Institute of Gene Biology of RAS

Author for correspondence.
Email: georgiev@genebiogy.ru
Russia, Moscow

References

  1. Kustikova O.S., Kiselev S.L., Borodulina O.R. et al. A.A. Cloning of the tag7 gene expressed in metastatic mouse tumors // Genetika. 1996. V. 32. P. 621–628.
  2. Kiselev S.L., Kustikova O.S., Korobko E.V. et al. Molecular cloning and characterization of the mouse tag7 gene encoding a novel cytokine // J. Biol. Chem. 1998. V. 273. P. 18633–18639.
  3. Kiselev S.L., Larin S.S., Gnuchev N.V., Georgiev G.P. tag7 Gene and gene therapy of cancer // Genetika. 2000. V. 36. P. 1431–1435.
  4. Moiseyenko V.M., Danilov A.O., Baldueva I.A. et al. Phase I/II trial of gene therapy with autologous tumor cells modified with tag7/PGRP-S gene in patients with disseminated solid tumors: miscellaneous tumors // Ann. Oncol. 2005. V. 16. P. 162–168.
  5. Liu C., Gelius E., Liu G. et al. Mammalian peptidoglycan recognition protein binds peptidoglycan with high affinity, is expressed in neutrophils, and inhibits bacterial growth // J. Biol. Chem. 2000. V. 275. P. 24490–24499.
  6. Kashyap D.R., Rompca A., Gaballa A. et al. Peptidoglycan recognition proteins kill bacteria by inducing oxidative, thiol, and metal stress // PLoS Pathog. 2014. V. 10. e1004280.
  7. Dziarski R., Gupta D. How innate immunity proteins kill bacteria and why they are not prone to resistance // Curr. Genet. 2018. V. 64. P. 125–129.
  8. Larin S.S., Korobko E.V., Kustikova O.S. et al. Immunotherapy with autologous tumor cells engineered to secrete Tag7/PGRP, an innate immunity recognition molecule // J. Gene Med. 2004. V. 6. P. 798–808.
  9. Sashchenko L.P., Dukhanina E.A., Yashin D.V. et al. Peptidoglycan recognition protein tag7 forms a cytotoxic complex with heat shock protein 70 in solution and in lymphocytes // J. Biol. Chem. 2004. V. 279. P. 2117–2124.
  10. Yashin D.V., Ivanova O.K., Soshnikova N.V. et al. Tag7 (PGLYRP1) in Complex with Hsp70 Induces Alternative Cytotoxic Processes in Tumor Cells via TNFR1 Receptor // J. Biol. Chem. 2015. V. 290. P. 21724–21731.
  11. Read C.B., Kuijper J.L., Hjorth S.A. et al. Cutting Edge: identification of neutrophil PGLYRP1 as a ligand for TREM-1 // J. Immunol. 2015. V. 194. P. 1417–1421.
  12. Kitaura H., Marahleh A., Ohori F. et al. Role of the Interaction of Tumor Necrosis Factor-α and Tumor Necrosis Factor Receptors 1 and 2 in Bone-Related Cells // Int. J. Mol. Sci. 2022. V. 23. P. 1481.
  13. Liu X., Xie X., Ren Y. et al. The role of necroptosis in disease and treatment // MedComm (2020). 2021. V. 2. P. 730–755.
  14. Gough P., Myles I.A. Tumor Necrosis Factor Receptors: Pleiotropic Signaling Complexes and Their Differential Effects // Front. Immunol. 2020. V. 11. Art. 585880.
  15. Roberts J.Z., Crawford N., Longley D.B. The role of Ubiquitination in Apoptosis and Necroptosis // Cell Death Differ. 2022. V. 29. P. 272–284.
  16. Romanova E.A., Sharapova T.N., Telegin G.B. et al. A 12-mer Peptide of Tag7 (PGLYRP1) Forms a Cytotoxic Complex with Hsp70 and Inhibits TNF-Alpha Induced Cell Death // Cells. 2020. V. 9. P. 488.
  17. Hu C., Yang J., Qi Z. et al. Heat shock proteins: Biological functions, pathological roles, and therapeutic opportunities // MedComm (2020). 2022. V. 3. P. e161.
  18. Yashin D.V., Ivanova O.K., Soshnikova N.V. et al. L.P. Tag7 (PGLYRP1) in Complex with Hsp70 Induces Alternative Cytotoxic Processes in Tumor Cells via TNFR1 Receptor // J. Biol. Chem. 2015. V. 290. P. 21724–21731.
  19. Dukhanina E.A., Yashin D.V., Lukjanova T.I. et al. Administration of the cytotoxic complex Tag7-Hsp70 to mice with transplanted tumors inhibits tumor growth // Dokl. Biol. Sci. 2007. V. 414. P. 246–248.
  20. Telegin G.B., Chernov A.S., Kazakov V.A. et al. A 8-mer Peptide of PGLYRP1/Tag7 Innate Immunity Protein Binds to TNFR1 Receptor and Inhibits TNFα-Induced Cytotoxic Effect and Inflammation // Front. Immunol. 2021. V. 12. Art. 622471.
  21. Arts R.J., Joosten L.A., van der Meer J.W., Netea M.G. TREM-1: intracellular signaling pathways and interaction with pattern recognition receptors // J. Leukoc. Biol. 2013. V. 93. P. 209–215.
  22. Sharapova T.N., Ivanova O.K., Soshnikova N.V. et al. Innate Immunity Protein Tag7 Induces 3 Distinct Populations of Cytotoxic Cells That Use Different Mechanisms to Exhibit Their Antitumor Activity on Human Leukocyte Antigen- Deficient Cancer Cells // J. Innate. Immun. 2017. V. 9. P. 598–608.
  23. Ivanova O.K., Sharapova T.N., Romanova E.A. et al. CD3+ CD8+ NKG2D+ T Lymphocytes Induce Apoptosis and Necroptosis in HLA- Negative Cells via FasL-Fas Interaction // J. Cell Biochem. 2017. V. 118. P. 3359–3366.
  24. Yashin D.V., Romanova E.A., Ivanova O.K., Sashchenko L.P. The Tag7-Hsp70 cytotoxic complex induces tumor cell necroptosis via permeabilisation of lysosomes and mitochondria // Biochimie. 2016. V. 123. P. 32–36.
  25. Sashchenko L.P., Dukhanina E.A., Shatalov Y.V. et al. Cytotoxic T lymphocytes carrying a pattern recognition proteinTag7 can detect evasive, tumor cells, HLA-negative but HSP-expressing thereby ensuring FasL/Fas-mediated contact killing // Blood. 2007. V. 110. P. 1997–2004.
  26. Yashin D.V., Sashchenko L.P., Kabanova O.D. et al. The CD8+population of LAK cells can lyse both HLA-positive and HLA-negative cancer cell lines // Dokl. Biol. Sci. 2009. V. 426. P. 296–297.
  27. Sharapova T.N., Ivanova O.K., Romanova E.A. et al. N-Terminal Peptide of PGLYRP1/Tag7 Is a Novel Ligand for TREM-1 Receptor // Int. J. Mol. Sci. 2022. V. 23. Art. 5752.
  28. Telegin G.B., Chernov A.S., Minakov A.N. et al. Short Peptides of Innate Immunity Protein Tag7 Inhibit the Production of Cytokines in CFA-Induced Arthritis // Int. J. Mol. Sci. 2022. V. 23. Art. 12435.
  29. Lukanidin E.M., Georgiev G.P. Metastasis-related mts1 gene // Curr. Top. Microbiol. Immunol. 1996. V. 213. P. 171–195.
  30. Romanova E.A., Dukhanina E.A., Sharapova T.N. et al. Lymphocytes incubated in the presence of IL-2 lose the capacity for chemotaxis but acquire antitumor activity // Dokl. Biol. Sci. 2017. V. 472. P. 31–33.
  31. Dukhanina E.A., Lukyanova T.I., Romanova E.A. et al. A new role for PGRP-S (Tag7) in immune defense: lymphocyte migration is induced by a chemoattractant complex of Tag7 with Mts1 // Cell Cycle. 2015. V. 14. P. 3635–3643.
  32. Sharapova T.N., Romanova E.A., Sashchenko L.P., Yashin D.V. Tag7-Mts1 Complex Induces Lymphocytes Migration via CCR5 and CXCR3 Receptors // Acta Naturae. 2018. V. 10. P. 115–120.
  33. Novik A.V., Danilova A.B., Sluzhev M.I. et al. An Open-Label Study of the Safety and Efficacy of Tag-7 Gene-Modified Tumor Cells-Based Vaccine in Patients with Locally Advanced or Metastatic Malignant Melanoma or Renal Cell Cancer // Oncologist. 2020. V. 25. P. e1303-e1317.
  34. Lurain K., Ramaswami R., Yarchoan R., Uldrick T.S. Anti-PD-1 and Anti-PD-L1 Monoclonal Antibodies in People Living with HIV and Cancer // Curr. HIV/AIDS Rep. 2020. V. 17. P. 547–556.
  35. Bukhari M.H., Zain S., Syed M. The new criteria for a COVID19 patient for the clinical practice to determine the need for an early therapeutic regimen and to decrease mortality // Pak. J. Med. Sci. 2021. V. 37. P. 1536–1539.
  36. Sharapova T.N., Romanova E.A., Chernov A.S. et al. Protein PGLYRP1/Tag7 Peptides Decrease the Proinflammatory Response in Human Blood Cells and Mouse Model of Diffuse Alveolar Damage of Lung through Blockage of the TREM-1 and TNFR1 Receptors // Int. J. Mol. Sci. 2021. V. 22. Art. 11213.
  37. Abdulmajid B., Blanken A.B., van Geel E.H. et al. Effect of TNF inhibitors on arterial stiffness and intima media thickness in rheumatoid arthritis: a systematic review and meta-analysis // Clin. Rheumatol. 2023. V. 42. P. 999–1011.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (519KB)
3.

Download (42KB)
4.

Download (72KB)
5.

Download (166KB)

Copyright (c) 2023 Д.В. Яшин, Л.П. Сащенко, Г.П. Георгиев

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies