OPTOGENETICS: FUNDAMENTAL AND APPLIED ASPECTS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper is devoted to optogenetics as a method that allows the cells of an organism to acquire light sensitivity. The history of the origin and development of optogenetics is briefly reviewed. The role of optogenetics in studying both the fundamental mechanisms of brain functions and in understanding the mechanisms of a number of neurological and psychiatric diseases, including those associated with memory loss, is discussed.

The real field of clinical application of optogenetics methods to date, namely in ophthalmology, is discussed in detail. Clinical trials have shown the principal possibility of optogenetic prosthetics of “blind” retina and partial restoration of visual functions. Data on one of the four ongoing clinical trials, its success and limitations are presented. The conditions and prospects for further development of optogenetic prosthetic technologies for blind retina in the last stages of the neurodegenerative process are discussed in detail. The question of the type of nerve cells in the degenerating retina most promising for optogenetic prosthetics is discussed. The authors believe that genes of visual, G-protein-binding rhodopsins (most likely cones), which trigger the enzymatic cascade of light signal amplification, are the most promising for optogenetic prosthetics. The use of genes of genetically modified channel rhodopsins as “tools” for optogenetic prosthetics of degenerative retina is undoubtedly possible and, as clinical trials show, quite realistic.

About the authors

M. P. Kirpichnikov

M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences; Lomonosov Moscow State University

Email: kirpichnikov@inbox.ru
Russia, Moscow; Russia, Moscow

M. A. Ostrovsky

Lomonosov Moscow State University; N.M. Emanuel Institute of biochemical Physics of the Russian Academy of Sciences

Author for correspondence.
Email: ostrovsky3535@mail.ru
Russia, Moscow; Russia, Moscow

References

  1. Famintzin A. Die Wirkung des Lichtes auf die Bewegung der Chlamidomonas pulvisculus Ehr., Euglena viridis Ehr. und Oscillatoria insignis Tw. Mélanges // Biol. Tirés Bull. Acad. Imp. Sci. St.-Pétersb., 1866. 6: 73–93.
  2. Litvin F.F., Sineshchekov O.A., Sineshchekov V.A. Photoreceptor electric potential in the phototaxis of the alga Haematococcus pluvialis // Nature. 1978. № 271. P. 476–478. https://doi.org/10.1038/271476a0
  3. Nagel G., Szellas T., Huhn W. et al. (2003) Channelrhodopsin-2, a directly light gated cation selective membrane channel // Proc. Natl. Acad. Sci. USA. 2003. № 100. P. 13940–13945. https://doi.org/10.1073/pnas.1936192100
  4. Boyden E.S., Zhang F., Bamberg E. et al. (2005) Millisecond timescale, genetically targeted optical control of neural activity // Nat. Neurosci. 2005. № 8. P. 1263–1268. https://doi.org/10.1038/nn1525
  5. Rajalingham R., Sorenson M., Azadi R. et al. (2021). Chronically implantable LED arrays for behavioral optogenetics in primates // Nat. Methods. 2021. № 18. P. 1112–1116. https://doi.org/10.1038/s41592-021-01238-9
  6. Vetere G., Tran L.M., Moberg S. et al. (2019). Memory formation in the absence of experience // Nat. Neurosci. 2019. № 22. P. 933–940. https://doi.org/10.1038/s41593-019-0389-0
  7. Островский М.А., Кирпичников М.П. Перспективы оптогенетического протезирования дегенеративной сетчатки глаза // Биохимия. 2019. Т. 84. № 5. С. 634–647. https://doi.org/10.1134/S0320972519050038
  8. Sahel J.A., Boulanger-Scemama E., Pagot C. et al. Partial recovery of visual function in a blind patient after optogenetic therapy // Nat Med. 2021. № 27(7). P. 1223–1229. https://doi.org/10.1038/s41591-021-01351-4
  9. Berry M.H., Holt A., Salari A. et al. (2019) Restoration of high-sensitivity and adapting vision with a cone opsin // Nat. Commun. 2019. № 10 (1). P. 1221. https://doi.org/10.1038/s41467-019-09124-x
  10. Иджилова О.С., Колотова Д.Е., Смирнова Г.Р. и др. Неселективная экспрессия коротковолнового колбочкового опсина улучшает обучение мышей с дегенерацией сетчатки в задаче с восприятием зрительных стимулов // ДАН: науки о жизни. 2023. Т. 510. С. 297–302. EDN: QHNHBWhttps://doi.org/10.31857/S268673892360005X
  11. Busskamp V., Duebel J., Balya D. et al. Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa // Science. 2010. № 329(5990). P. 413–417. https://doi.org/10.1126/science.1190897
  12. Ротов А.Ю., Фирсов М.Л. Оптопротезирование биполярных клеток сетчатки // Журнал эволюционной биохимии и физиологии. 2022. Т. 58. № 6. С. 457–467.
  13. Berry M.H., Holt A., Salari A. et al. Restoration of high-sensitivity and adapting vision with a cone opsin // Nat. Commun. 2019. № 10 (1). P. 1221. https://doi.org/10.1038/s41467-019-09124-x

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (543KB)
3.

Download (190KB)
4.

Download (286KB)

Copyright (c) 2023 М.П. Кирпичников, М.А. Островский

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies