Prospects for the development of small nuclear power plants in Russia

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This article reviews the main properties of the modular design of small nuclear power plants (SNPPs), shows the possibility of reducing the cost and construction time of this class of plants through factory production, the effect of serialization, and the reduction of redundant safety systems. The prospects for significant expansion of the field of application of nuclear technologies due to their modularity and the possibility to ensure high safety performance are presented. Possible areas of SNPP use for power supply of remote territories including the Arctic area, production of high-potential heat and hydrogen for industrial consumers, and other applications are analyzed. It shows the need to develop and implement a new nuclear energy technology platform based on SNPPs to solve the problems of global decarbonization of the world economy by significantly expanding the scope of nuclear energy technologies in addition to the currently developed technological platform of a closed nuclear fuel cycle with fast neutron reactors and the technological platform of controlled thermonuclear fusion. The authors propose to create a pilot site for testing technologies for captive production of hydrogen (heat) for an industrial consumer, as well as other technologies for the utilitarian use of SNPPs based on a pilot demonstration of a nuclear power plant with a high-temperature (about 1100C) fast neutron reactor with a gas coolant. 

About the authors

S. G. Kalyakin

All-Russia Research Institute for Operation of Nuclear Power Plants, JSC

Email: vestnik.ran@yandex.ru
Moscow, Russia

S. L. Soloviev

All-Russia Research Institute for Operation of Nuclear Power Plants, JSC

Email: vestnik.ran@yandex.ru
Moscow, Russia

D. G. Zaryugin

Rosatom State Atomic Energy Corporation

Author for correspondence.
Email: vestnik.ran@yandex.ru
Moscow, Russia

References

  1. Clark M.A., Domingo N.G.G., Colgan K. et al. Global food system emissions could preclude achieving the 1.5° and 2°C climate change targets // Science. 2020. V. 370. Iss. 6517. P. 705−708.
  2. Status of Innovative Small and Medium Sized Reactor Designs 2005: Reactors with Conventional Refuelling Schemes / Intern. Atomic Energy Agency. Vienna, 2006 (IAEA-TECDOC-1485).
  3. Status of Small Reactor Designs without On-site Refueling / Intern. Atomic Energy Agency. Vienna, 2007. (IAEA-TECDOC-1536).
  4. Small Reactors without On-site Refueling: General Vision, Neutronic Characteristics, Emergency Planning Considerations, and Deployment Scenarios: Final Report of IAEA Coordinated Research Project on Small Reactors without On-site Refueling / Intern. Atomic Energy Agency. Vienna, 2010 (IAEA-TECDOC-1652).
  5. Сборник материалов и результатов исследования вопросов правового и институционального обеспечения транспортабельной атомной энергетики / Госкорпорация “Росатом”, НИЦ “Курчатовский институт”. М.: НИЦ “Курчат. ин-т”, 2013.
  6. Кузнецов В.П. Жизненный цикл транспортабельных атомных энергетических установок и отдельные вопросы его правового и институционального обеспечения // Отчёт международного проекта ИНПРО. Вып. 3 / РНЦ КИ. М., 2009.
  7. Small Modular Reactors: Nuclear Energy Market Potential for Near-term Deployment. OECD-NEA.org. 2016.
  8. Small Modular Reactors: Challenges and Opportunities. OECD-NEA.org. 2021.
  9. Тарасенко А.Б., Школьников Е.И. Водородный цикл и другие способы буферного аккумулирования электроэнергии для энергоустановок на солнечных батареях: сравнительный технико-экономический анализ // Тезисы докладов Второй Международной конференции “Технологии хранения водорода” (Москва, 28–29 октября 2009 г.). С. 43–44.
  10. Климентьев А.Ю., Климентьева А.А. Аммиак – перспективное моторное топливо для безуглеродной экономики // Транспорт на альтернативном топливе. 2017. № 3 (57). С. 32−44.
  11. The Hydrogen Economy. Opportunities and Challenges. Cambridge University Press, 2009.
  12. Журавлёв И.Б., Залужный А.А., Птицын П.Б. Технико-экономические исследования (ТЭИ) по теме приоритетного направления научно-технического развития “Водородная энергетика” // М.: ЦАИР, частное учреждение “Наука и инновации”, 2021.
  13. Соловьев С.Л., Зарюгин Д.Г., Калякин С.Г., Лескин С.Т. Определение основных направлений развития атомных станций малой мощности // Известия вузов. Ядерная энергетика. 2022. № 1. С. 22−31.
  14. Rouillard J., Rouyer J. Technical and Economic Evaluation of Potable Water Production Through Desalination of Sea Water by Using Nuclear Energy and Other Means // Intern. Atomic Energy Agency. Vienna, 1992. (IAEA-TECDOC-666).
  15. Сборник работ лауреатов международного конкурса научных, научно-технических и инновационных разработок, направленных на развитие и освоение Арктики и континентального шельфа. М.: Министерство энергетики Российской Федерации, ООО “Технологии развития”, 2014.
  16. Левченко В.А., Белугин В.А., Казанский Ю.А. и др. Основные характеристики америциевого реактора для нейтронной терапии. Реактор “Марс” // Известия вузов. Ядерная энергетика. 2003. № 3. С. 72−82.
  17. Advances in Small Modular Reactor Technology Developments. 2018 Edition. IAEA. https://aris.iaea.org/Publications/SMR-Book_2018.pdf
  18. Advances in Small Modular Reactor Technology Developments, A supplement to: IAEA Advances Reactors Information System (ARIS), 2020 Edition, IAEA, Vienna. https://aris.iaea.org/Publications/SMR_Book_2020.pdf
  19. Драгунов Ю.Г. Быстрый газоохлаждаемый реактор для космической ЯЭДУ мегаваттного класса // Конф. “Инновации в атомной энергетике – 2014”. М.: НИКИЭТ, 2014.
  20. Ловцов А.С., Селиванов М.Ю., Томилин Д.А. и др. Основные результаты разработок Центра Келдыша в области ЭРДУ // Известия РАН. Энергетика. 2020. № 2. С. 3−15.
  21. Ковальчук М.В., Чайванов Б.Б., Абалин С.С., Фейнберг О.С. Ядерный источник на жидких солях для Арктики // Вопросы атомной науки и техники. Серия: Физика ядерных реакторов. 2018. Вып. 1. С. 61−69.
  22. Ковальчук М.В., Чайванов Б.Б., Абалин С.С и др. К вопросу выбора ядерного энергоисточника для Арктики // Вопросы атомной науки и техники. Серия: Физика ядерных реакторов. 2020. Вып. 3. С. 4−12.
  23. Сорокин А.П., Калякин С.Г., Козлов Ф.А. и др. Высокотемпературная ядерная энерготехнология на основе быстрых реакторов с натриевым теплоносителем для производства водорода // Атомная энергия. 2014. Т. 116. Вып. 4. С. 194−203.
  24. Reinforcing the Global Nuclear Order for Peace and Prosperity: The Role of the IAEA to 2020 and Beyond. Report prepared by an independent Commission at the request of the Director General of the International Atomic Energy Agency. May 2008.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (605KB)

Copyright (c) 2023 С.Л. Соловьев, Д.Г. Зарюгин, С.Г. Калякин

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».