Chemerin as a cardiovascular biological marker: Present and future

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Cardiovascular diseases are the leading cause of invalidity and mortality in the majority of developed countries and are recognized by the international community as a pandemic problem. An important task of modern cardiology is the search and study of new biological markers.

This literature review aimed to consider chemerin as a new diagnostic and prognostic marker for cardiovascular pathologies. Thus far, studies on chemerin indicate the possibility of its use as a marker of cardiovascular pathology. Evidence points to the important role of chemerin in the development and progression of cardiovascular diseases. As an adipokine, chemerin modulates glucose, and lipid levels, thereby influencing lipid deposition in the endothelium and progression of atherosclerosis. As a chemoattractant, it facilitates the mobilization and interaction of macrophages with dendritic cells and natural killer cells in the vascular system and induces endothelial angiogenesis. The established role of chemerin in vascular inflammation, angiogenesis, and blood pressure modulation opens serious prospects for the development of therapeutics targeting this biomarker for the treatment of cardiovascular diseases. Several candidates targeting chemerin and the CMRK1 signaling pathway have shown promising potential in reducing vascular dysfunction in in vitro and in vivo studies. Further studies analyzing the efficacy and safety of new chemerin-targeting drugs are needed to assess their potential.

About the authors

Amina M. Alieva

Pirogov Russian National Research Medical University

Author for correspondence.
Email: amisha_alieva@mail.ru
ORCID iD: 0000-0001-5416-8579
SPIN-code: 2749-6427

MD, Cand. Sci. (Med.), associate professor

Russian Federation, 1 Ostrovityanova street, 117997 Moscow

Elena V. Reznik

Pirogov Russian National Research Medical University

Email: elenaresnik@gmail.com
ORCID iD: 0000-0001-7479-418X
SPIN-code: 3494-9080
ResearcherId: N-6856-2016

MD, Dr. Sci. (Med.), professor

Russian Federation, 1 Ostrovityanova street, 117997 Moscow

Natalia V. Teplova

Pirogov Russian National Research Medical University

Email: teplova.nv@yandex.ru
ORCID iD: 0000-0002-7181-4680
SPIN-code: 9056-1948

MD, Dr. Sci. (Med.), professor

Russian Federation, 1 Ostrovityanova street, 117997 Moscow

Irina E. Baykova

Pirogov Russian National Research Medical University

Email: 1498553@mail.ru
ORCID iD: 0000-0003-0886-6290
SPIN-code: 3054-8884

MD, Cand. Sci. (Med.), associate professor

Russian Federation, 1 Ostrovityanova street, 117997 Moscow

Lidiya M. Shnakhova

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: shnakhova_l_m@staff.sechenov.ru
ORCID iD: 0000-0003-3000-0987
SPIN-code: 5549-5823

MD

Russian Federation, Moscow

Irina A. Kotikova

Pirogov Russian National Research Medical University

Email: kotikova.ia@mail.ru
ORCID iD: 0000-0001-5352-8499
SPIN-code: 1423-7300

student

Russian Federation, 1 Ostrovityanova street, 117997 Moscow

Alpiyat M. Shekshebekova

Pirogov Russian National Research Medical University

Email: shekhshebekovaa@mail.ru
ORCID iD: 0000-0002-8600-9115

resident

Russian Federation, 1 Ostrovityanova street, 117997 Moscow

Igor G. Nikitin

Pirogov Russian National Research Medical University

Email: igor.nikitin.64@mail.ru
ORCID iD: 0000-0003-1699-0881
SPIN-code: 3595-1990

MD, Dr. Sci. (Med.), professor

Russian Federation, 1 Ostrovityanova street, 117997 Moscow

References

  1. Savarese G, Becher PM, Lund LH, et al. Global burden of heart failure: a comprehensive and updated review of epidemiology. Cardiovasc Res. 2023;118(17):3272–3287. doi: 10.1093/cvr/cvac013
  2. Butnariu LI, Florea L, Badescu MC, et al. Etiologic puzzle of coronary artery disease: how important is genetic component? Life (Basel). 2022;12(6):865. doi: 10.3390/life12060865
  3. Kozhevnikova MV, Belenkov YuN. Biomarkers in heart failure: current and future. Kardiologiia. 2021;61(5):4–16. (In Russ). doi: 10.18087/cardio.2021.5.n1530
  4. Alieva AM, Almazova II, Pinchuk TV, et al. The value of copeptin in the diagnosis and prognosis of the course of cardiovascular diseases. Clinical medicine. 2020;98(3):203–209. (In Russ). doi: 10.30629/0023-2149-2020-98-3-203-209
  5. Alieva AM, Pinchuk TV, Voronkova KV, et al. Neopterin as a biomarker of chronic heart failure (review of modern literature). Consilium Medicum. 2021;23(10):756–759. (In Russ). doi: 10.26442/20751753.2021.10.201113
  6. Macvanin MT, Rizzo M, Radovanovic J, et al. Role of chemerin in cardiovascular diseases. Biomedicines. 2022;10(11):2970. doi: 10.3390/biomedicines10112970
  7. Yu M, Yang Y, Huang C, et al. Chemerin: a functional adipokine in reproductive health and diseases. Biomedicines. 2022;10(8):1910. doi: 10.3390/biomedicines10081910
  8. Zdanowicz K, Bobrus-Chociej A, Lebensztejn DM. Chemerin as potential biomarker in pediatric diseases: a prisma-compliant study. Biomedicines. 2022;10(3):591. doi: 10.3390/biomedicines10030591
  9. Recinella L, Orlando G, Ferrante C, et al. Adipokines: new potential therapeutic target for obesity and metabolic, rheumatic, and cardiovascular diseases. Front Physiol. 2020;11:578966. doi: 10.3389/fphys.2020.578966
  10. Rourke JL, Dranse HJ, Sinal CJ. Towards an integrative approach to understanding the role of chemerin in human health and disease. Obes Rev. 2013;14(3):245–262. doi: 10.1111/obr.12009
  11. Yan Q, Zhang Y, Hong J, et al. The association of serum chemerin level with risk of coronary artery disease in Chinese adults. Endocrine. 2012;41(2):281–288. doi: 10.1007/s12020-011-9550-6
  12. Dong B, Ji W, Zhang Y. Elevated serum chemerin levels are associated with the presence of coronary artery disease in patients with metabolic syndrome. InterN Med. 2011;50(10):1093–1097. doi: 10.2169/internalmedicine.50.5025
  13. Wang B, Kou W, Ji S, et al. Prognostic value of plasma adipokine chemerin in patients with coronary artery disease. Front Cardiovasc Med. 2022;9:968349. doi: 10.3389/fcvm.2022.968349
  14. Spiroglou SG, Kostopoulos CG, Varakis JN, Papadaki HH. Adipokines in periaortic and epicardial adipose tissue: differential expression and relation to atherosclerosis. J Atheroscler Thromb. 2010;17(2):115–130. doi: 10.5551/jat.1735
  15. Yoo HJ, Choi HY, Yang SJ, et al. Circulating chemerin level is independently correlated with arterial stiffness. J Atheroscler Thromb. 2012;19(1):59–66. doi: 10.5551/jat.9647
  16. Lehrke M, Becker A, Greif M, et al. Chemerin is associated with markers of inflammation and components of the metabolic syndrome but does not predict coronary atherosclerosis. Eur J Endocrinol. 2009;161(2):339–344. doi: 10.1530/EJE-09-0380
  17. Sotiropoulos GP, Dalamaga M, Antonakos G, et al. Chemerin as a biomarker at the intersection of inflammation, chemotaxis, coagulation, fibrinolysis and metabolism in resectable non-small cell lung cancer. Lung Cancer. 2018;125:291–299. doi: 10.1016/j.lungcan.2018.10.010
  18. Treeck O, Buechler C. Chemerin signaling in cancer. Cancers (Basel). 2020;12(11):3085. doi: 10.3390/cancers12113085
  19. Nagpal S, Patel S, Jacobe H, et al. Tazarotene-induced gene 2 (TIG2), a novel retinoid-responsive gene in skin. J Invest Dermatol. 1997;109(1):91–95. doi: 10.1111/1523-1747.ep12276660
  20. Xie C, Chen Q. Adipokines: new therapeutic target for osteoarthritis? Curr Rheumatol Rep. 2019;21(12):71. doi: 10.1007/s11926-019-0868-z
  21. Fischer TF, Beck-Sickinger AG. Chemerin — exploring a versatile adipokine. Biol Chem. 2022;403(7):625–642. doi: 10.1515/hsz-2021-0409
  22. Zabel BA, Kwitniewski M, Banas M, et al. Chemerin regulation and role in host defense. Am J Clin Exp Immunol. 2014;3(1):1–19.
  23. Kwiecien K, Brzoza P, Bak M. The methylation status of the chemerin promoter region located from –252 to + 258 bp regulates constitutive but not acute-phase cytokine-inducible chemerin expression levels. Sci Rep. 2020;10(1):13702. doi: 10.1038/s41598-020-70625-7
  24. Ferland DJ, Mullick AE, Watts SW. Chemerin as a driver of hypertension: a consideration. Am J Hypertens. 2020;33(11):975–986. doi: 10.1093/ajh/hpaa084
  25. Zhu L, Huang J, Wang Y, et al. Chemerin causes lipid metabolic imbalance and induces passive lipid accumulation in human hepatoma cell line via the receptor GPR1. Life Sci. 2021;278:119530. doi: 10.1016/j.lfs.2021.119530
  26. Zhao L, Leung LL, Morser J. Chemerin forms: their generation and activity. Biomedicines. 2022;10(8):2018. doi: 10.3390/biomedicines10082018
  27. Darios ES, Winner BM, Charvat T, et al. The adipokine chemerin amplifies electrical field-stimulated contraction in the isolated rat superior mesenteric artery. Am J Physiol Heart Circ Physiol. 2016;311(2):H498–H507. doi: 10.1152/ajpheart.00998.2015
  28. De Henau O, Degroot GN, Imbault V, et al. Signaling properties of chemerin receptors CMKLR1, GPR1 and CCRL2. PLoS One. 2016;11(10):e0164179. doi: 10.1371/journal.pone.0164179
  29. Wang L, Zhang Y, Guo Y, et al. Chemerin/CMKLR1 axis promotes the progression of proliferative diabetic retinopathy. Int J Endocrinol. 2021;2021:4468625. doi: 10.1155/2021/4468625
  30. Gudelska M, Dobrzyn K, Kiezun M, et al. The expression of chemerin and its receptors (CMKLR1, GPR1, CCRL2) in the porcine uterus during the oestrous cycle and early pregnancy and in trophoblasts and conceptuses. Animal. 2020;14(10):2116–2128. doi: 10.1017/S175173112000097X
  31. Fischer TF, Czerniak AS, Weiß T, et al. Ligand-binding and -scavenging of the chemerin receptor GPR1. Cell Mol Life Sci. 2021;78(17-18):6265–6281. doi: 10.1007/s00018-021-03894-8
  32. Kennedy AJ, Davenport AP. International union of basic and clinical pharmacology CIII: chemerin receptors CMKLR1 (chemerin1) and GPR1 (chemerin2) nomenclature, pharmacology, and function. Pharmacol Rev. 2018;70(1):174–196. doi: 10.1124/pr.116.013177
  33. Yun H, Dumbell R, Hanna K, et al. The chemerin-CMKLR1 axis is functionally important for central regulation of energy homeostasis. Front Physiol. 2022;13:897105. doi: 10.3389/fphys.2022.897105
  34. Kaur J, Mattu HS, Chatha K, Randeva HS. Chemerin in human cardiovascular disease. Vascul Pharmacol. 2018;110:1–6. doi: 10.1016/j.vph.2018.06.018
  35. Karampela I, Christodoulatos GS, Vallianou N, et al. Circulating chemerin and its kinetics may be a useful diagnostic and prognostic biomarker in critically ill patients with sepsis: a prospective study. Biomolecules. 2022;12(2):301. doi: 10.3390/biom12020301
  36. Hillenbrand A, Weiss M, Knippschild U, et al. Sepsis-induced adipokine change with regard to insulin resistance. Int J Inflam. 2012;2012:972368. doi: 10.1155/2012/972368
  37. Jaworek J, Szklarczyk J, Kot M, et al. Chemerin alleviates acute pancreatitis in the rat thorough modulation of NF-κB signal. Pancreatology. 2019;19(3):401–408. doi: 10.1016/j.pan.2019.02.005
  38. Szpakowicz A, Szpakowicz M, Lapinska M, et al. Serum chemerin concentration is associated with proinflammatory status in chronic coronary syndrome. Biomolecules. 2021;11(8):1149. doi: 10.3390/biom11081149
  39. Goralski KB, McCarthy TC, Hanniman EA, et al. Chemerin, a novel adipokine that regulates adipogenesis and adipocyte metabolism. J Biol Chem. 2007;282(38):28175–28188. doi: 10.1074/jbc.M700793200
  40. Jia J, Yu F, Xiong Y, et al. Chemerin enhances the adhesion and migration of human endothelial progenitor cells and increases lipid accumulation in mice with atherosclerosis. Lipids Health Dis. 2020;19(1):207. doi: 10.1186/s12944-020-01378-5
  41. Wittamer V, Franssen JD, Vulcano M, et al. Specific recruitment of antigen-presenting cells by chemerin, a novel processed ligand from human inflammatory fluids. J Exp Med. 2003;198(7):977–985. doi: 10.1084/jem.20030382
  42. Yamawaki H, Kameshima S, Usui T, et al. A novel adipocytokine, chemerin exerts anti-inflammatory roles in human vascular endothelial cells. Biochem Biophys Res Commun. 2012;423(1): 152–157. doi: 10.1016/j.bbrc.2012.05.103
  43. Bozaoglu K, Curran JE, Stocker CJ, et al. Chemerin, a novel adipokine in the regulation of angiogenesis. J Clin Endocrinol Metab. 2010;95(5):2476–2485. doi: 10.1210/jc.2010-0042
  44. Ferland DE, Watts SW. Chemerin: a comprehensive review elucidating the need for cardiovascular research. Pharmacol Res. 2015;99:351–361. doi: 10.1016/j.phrs.2015.07.018
  45. Neves KB, Lobato NS, Lopes RA, et al. Chemerin reduces vascular nitric oxide/cGMP signalling in rat aorta: a link to vascular dysfunction in obesity? Clin Sci (Lond). 2014;127(2):111–122. doi: 10.1042/CS20130286
  46. Siragusa M, Fleming I. The eNOS signalosome and its link to endothelial dysfunction. Pflug Arch. 2016;468(7):1125–1137. doi: 10.1007/s00424-016-1839-0
  47. Xie Y, Liu L. Role of chemerin/ChemR23 axis as an emerging therapeutic perspective on obesity-related vascular dysfunction. J Transl Med. 2022;20(1):141. doi: 10.1186/s12967-021-03220-7
  48. Nakamura N, Naruse K, Kobayashi Y, et al. Chemerin promotes angiogenesis in vivo. Physiol Rep. 2018;6(24):e13962. doi: 10.14814/phy2.13962
  49. Corre I, Paris F, Huot J. The p38 pathway, a major pleiotropic cascade that transduces stress and metastatic signals in endothelial cells. Oncotarget. 2017;8(33):55684–55714. doi: 10.18632/oncotarget.18264
  50. Dimitriadis GK, Kaur J, Adya R, et al. Chemerin induces endothelial cell inflammation: activation of nuclear factor-kappa beta and monocyte-endothelial adhesion. Oncotarget. 2018;9(24): 16678–16690. doi: 10.18632/oncotarget.24659
  51. Zhang R, Liu S, Guo B, et al. Chemerin induces insulin resistance in rat cardiomyocytes in part through the ERK1/2 signaling pathway. Pharmacology. 2014;94(5-6):259–264. doi: 10.1159/000369171
  52. Neves KB, Nguyen Dinh Cat A, Alves-Lopes R, et al. Chemerin receptor blockade improves vascular function in diabetic obese mice via redox-sensitive and Akt-dependent pathways. Am J Physiol Heart Circ Physiol. 2018;315(6):H1851–H1860. doi: 10.1152/ajpheart.00285.2018
  53. Xie Y, Huang Y, Ling X, et al. Chemerin/CMKLR1 axis promotes inflammation and pyroptosis by activating NLRP3 inflammasome in diabetic cardiomyopathy rat. Front Physiol. 2020;11:381. doi: 10.3389/fphys.2020.00381
  54. Lin X, Yang Y, Qu J, et al. Aerobic exercise decreases chemerin/CMKLR1 in the serum and peripheral metabolic organs of obesity and diabetes rats by increasing PPARγ. Nutr Metab (Lond). 2019;16:17. doi: 10.1186/s12986-019-0344-9
  55. Jun L, Lin-Lin S, Hui S. Chemerin promotes microangiopathy in diabetic retinopathy via activation of ChemR23 in rat primary microvascular endothelial cells. Mol Vis. 2021;27:575–587.
  56. Rodríguez-Penas D, Feijóo-Bandín S, García-Rúa V, et al. The adipokine chemerin induces apoptosis in cardiomyocytes. Cell Physiol Biochem. 2015;37(1):176–192. doi: 10.1159/000430343
  57. Yamamoto A, Sagara A, Otani K, et al. Chemerin-9 stimulates migration in rat cardiac fibroblasts in vitro. Eur J Pharmacol. 2021;912:174566. doi: 10.1016/j.ejphar.2021.174566
  58. Flood ED, Watts SW. Endogenous chemerin from PVAT amplifies electrical field-stimulated arterial contraction: use of the chemerin knockout rat. Int J Mol Sci. 2020;21(17):6392. doi: 10.3390/ijms21176392
  59. Yamamoto A, Matsumoto K, Hori K, et al. Acute intracerebroventricular injection of chemerin-9 increases systemic blood pressure through activating sympathetic nerves via CMKLR1 in brain. Pflugers Arch. 2020;472(6):673–681. doi: 10.1007/s00424-020-02391-4
  60. Wang JX, Wang XL, Xu ZQ, et al. Chemerin-9 in paraventricular nucleus increases sympathetic outflow and blood pressure via glutamate receptor-mediated ROS generation. Eur J Pharmacol. 2022;936:175343. doi: 10.1016/j.ejphar.2022.175343
  61. Peng L, Chen Y, Li Y, et al. Chemerin regulates the proliferation and migration of pulmonary arterial smooth muscle cells via the ERK1/2 signaling pathway. Front Pharmacol. 2022;13:767705. doi: 10.3389/fphar.2022.767705
  62. Kutlay Ö, Kaygısız Z, Kaygısız B. The effect of chemerin on cardiac parameters and gene expressions in isolated perfused rat heart. Balkan Med J. 2019;36(1):43–48. doi: 10.4274/balkanmedj.2017.1787
  63. Liu H, Xiong W, Luo Y, et al. Adipokine chemerin stimulates progression of atherosclerosis in ApoE–/– mice. Biomed Res Int. 2019;2019:7157865. doi: 10.1155/2019/7157865
  64. van der Vorst EPC, Mandl M, Müller M, et al. Hematopoietic ChemR23 (chemerin receptor 23) fuels atherosclerosis by sustaining an M1 macrophage-phenotype and guidance of plasmacytoid dendritic cells to murine lesions-brief report. Arterioscler Thromb Vasc Biol. 2019;39(4):685–693. doi: 10.1161/ATVBAHA.119.312386
  65. Lachine NA, Elnekiedy AA, Megallaa MH, et al. Serum chemerin and high-sensitivity C reactive protein as markers of subclinical atherosclerosis in Egyptian patients with type 2 diabetes. Ther Adv Endocrinol Metab. 2016;7(2):47–56. doi: 10.1177/2042018816637312
  66. Tan L, Chen Z, Sun F, et al. Placental trophoblast-specific overexpression of chemerin induces preeclampsia-like symptoms. Clin Sci (Lond). 2022;136(4):257–272. doi: 10.1042/CS20210989
  67. Chou HH, Teng MS, Hsu LA, et al. Circulating chemerin level is associated with metabolic, biochemical and haematological parameters-A population-based study. Clin Endocrinol (Oxf). 2021; 94(6):927–939. doi: 10.1111/cen.14441
  68. Ebert T, Gebhardt C, Scholz M, et al. Relationship between 12 adipocytokines and distinct components of the metabolic syndrome. J Clin Endocrinol Metab. 2018;103(3):1015–1023. doi: 10.1210/jc.2017-02085
  69. Wu Q, Chen Y, Chen S, et al. Correlation between adiponectin, chemerin, vascular endothelial growth factor and epicardial fat volume in patients with coronary artery disease. Exp Ther Med. 2020;19(2):1095–1102. doi: 10.3892/etm.2019.8299
  70. El Dayem SM, Battah AA, El Bohy Ael M, et al. Relationship of plasma level of chemerin and vaspin to early atherosclerotic changes and cardiac autonomic neuropathy in adolescent type 1 diabetic patients. J Pediatr Endocrinol Metab. 2015;28(3-4):265–273. doi: 10.1515/jpem-2014-0215
  71. Maghsoudi Z, Kelishadi R, Hosseinzadeh-Attar MJ. The comparison of chemerin, adiponectin and lipid profile indices in obese and non-obese adolescents. Diabetes Metab Syndr. 2016; 10(2 suppl. 1):S43–S46. doi: 10.1016/j.dsx.2016.01.020
  72. Akgul Balaban Y, Yilmaz N, Kalayci M, et al. Irisin and chemerin levels in patients with type 2 diabetes mellitus. Acta Endocrinol (Buchar). 2019;15(4):442–446. doi: 10.4183/aeb.2019.442
  73. Zhou Z, Chen H, Ju H, Sun M. Circulating chemerin levels and gestational diabetes mellitus: a systematic review and meta-analysis. Lipids Health Dis. 2018;17(1):169. doi: 10.1186/s12944-018-0826-1
  74. Demir CF, Ataş İN, Balgetir F, et al. Increased serum chemerin levels associated with carotid intima-media thickness. Arq Neuropsiquiatr. 2021;79(3):189–194. doi: 10.1590/0004-282X-ANP-2020-0195
  75. Yanofsky R, Sancho C, Gasbarrino K, et al. Expression of resistin, chemerin, and chemerin’s receptor in the unstable carotid atherosclerotic plaque. Stroke. 2021;52(8):2537–2546. doi: 10.1161/STROKEAHA.120.030228
  76. Kammerer A, Staab H, Herberg M, et al. Increased circulating chemerin in patients with advanced carotid stenosis. BMC Cardiovasc Disord. 2018;18(1):65. doi: 10.1186/s12872-018-0803-7
  77. Ji Q, Lin Y, Liang Z, et al. Chemerin is a novel biomarker of acute coronary syndrome but not of stable angina pectoris. Cardiovasc Diabetol. 2014;13:145. doi: 10.1186/s12933-014-0145-4
  78. Wójcik M, Kozioł-Kozakowska A, Januś D, et al. Circulating chemerin level may be associated with early vascular pathology in obese children without overt arterial hypertension — preliminary results. J Pediatr Endocrinol Metab. 2020;33(6):729–734. doi: 10.1515/jpem-2019-0460
  79. Gu P, Jiang W., Lu B, Shi Z. Chemerin is associated with inflammatory markers and metabolic syndrome phenotypes in hypertension patients. Clin Exp Hypertens. 2014;36(5):326–332. doi: 10.3109/10641963.2013.827697
  80. Ismaiel A, Ashfaq MZ, Leucuta DC, et al. Chemerin levels in acute coronary syndrome: systematic review and meta-analysis. Lab Med. 2022;53(6):552–560. doi: 10.1093/labmed/lmac059
  81. Liang Z, Yu K, Wu B, et al. The elevated levels of plasma chemerin and C-reactive protein in patients with acute coronary syndrome. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2015;31(7):953–956.
  82. Aronis KN, Sahin-Efe A, Chamberland JP, et al. Chemerin levels as predictor of acute coronary events: a case-control study nested within the veteran’s affairs normative aging study. Metabolism. 2014;63(6):760–766. doi: 10.1016/j.metabol.2014.02.013
  83. Ateş A, Arslan U, Aksakal A, et al. Plasma chemerin levels are increased in st elevation myocardial infarction patients with high thrombus burden. Cardiol Res Pract. 2018;2018:5812704. doi: 10.1155/2018/5812704
  84. Kostopoulos CG, Spiroglou SG, Varakis JN, et al. Chemerin and CMKLR1 expression in human arteries and periadventitial fat: a possible role for local chemerin in atherosclerosis? BMC Cardiovasc Disord. 2014;14:56. doi: 10.1186/1471-2261-14-56
  85. Er LK, Hsu LA, Juang JJ, et al. Circulating chemerin levels, but not the RARRES2 polymorphisms, predict the long-term outcome of angiographically confirmed coronary artery disease. Int J Mol Sci. 2019;20(5):1174. doi: 10.3390/ijms20051174
  86. Lurins J, Lurina D, Svirskis S, et al. Impact of several proinflammatory and cell degradation factors in patients with aortic valve stenosis. Exp Ther Med. 2019;17(4):2433–2442. doi: 10.3892/etm.2019.7254
  87. Zhou X, Tao Y, Chen Y, et al. Serum chemerin as a novel prognostic indicator in chronic heart failure. J Am Heart Assoc. 2019;8(15):e012091. doi: 10.1161/JAHA.119.012091
  88. Chen D, Wang J, Fu J. Serum chemerin predicts the prognosis of patients with dilated cardiomyopathy. Heart Surg Forum. 2020;23(3):E276–E280. doi: 10.1532/hsf.2885
  89. Zhang G, Xiao M, Zhang L, et al. Association of serum chemerin concentrations with the presence of atrial fibrillation. Ann Clin Biochem. 2017;54(3):342–347. doi: 10.1177/0004563216664367
  90. Daskalakis G, Bellos I, Nikolakea M, et al. The role of serum adipokine levels in preeclampsia: a systematic review. Metabolism. 2020;106:154172. doi: 10.1016/j.metabol.2020.154172
  91. Janmohammadi P, Raeisi T, Zarei M, et al. Adipocytokines in obstructive sleep apnea: a systematic review and meta-analysis. Respir Med. 2023;208:107122. doi: 10.1016/j.rmed.2023.107122
  92. Ashtary-Larky D, Kashkooli S, Bagheri R, et al. The effect of exercise training on serum concentrations of chemerin in patients with metabolic diseases: a systematic review and meta-analysis. Arch Physiol Biochem. 2021:1–10. doi: 10.1080/13813455.2021.1892149
  93. Liu M, Lin X, Wang X. Decrease in serum chemerin through aerobic exercise plus dieting and its association with mitigation of cardio-metabolic risk in obese female adolescents. J Pediatr Endocrinol Metab. 2018;31(2):127–135. doi: 10.1515/jpem-2017-0431
  94. Kim DI, Lee DH, Hong S, et al. Six weeks of combined aerobic and resistance exercise using outdoor exercise machines improves fitness, insulin resistance, and chemerin in the Korean elderly: a pilot randomized controlled trial. Arch Gerontol Geriatr. 2018;75:59–64. doi: 10.1016/j.archger.2017.11.006
  95. Lendeckel F, Zylla S, Markus MRP, et al. Association of cardiopulmonary exercise capacity and adipokines in the general population. Int J Sports Med. 2022;43(7):616–624. doi: 10.1055/a-1699-2380
  96. Ministrini S, Ricci MA, Nulli Migliola E, et al. Chemerin predicts carotid intima-media thickening in severe obesity. Eur J Clin Invest. 2020:e13256. doi: 10.1111/eci.13256
  97. Askarpour M, Alizadeh S, Hadi A, et al. Effect of bariatric surgery on the circulating level of adiponectin, chemerin, plasminogen activator inhibitor-1, leptin, resistin, and visfatin: a systematic review and meta-analysis. Horm Metab Res. 2020;52(4):207–215. doi: 10.1055/a-1129-6785
  98. Jannaway M, Torrens C, Warner JA, et al. Resolvin E1, resolvin D1 and resolvin D2 inhibit constriction of rat thoracic aorta and human pulmonary artery induced by the thromboxane mimetic U46619. Br J Pharmacol. 2018;175(7):1100–1108. doi: 10.1111/bph.14151
  99. Goralski KB, Sinal CJ. Elucidation of chemerin and chemokine-like receptor-1 function in adipocytes by adenoviral-mediated shRNA knockdown of gene expression. Methods Enzymol. 2009;460: 289–312. doi: 10.1016/s0076-6879(09)05214-8
  100. Shen W, Tian C, Chen H, et al. Oxidative stress mediates chemerin-induced autophagy in endothelial cells. Free Radic Biol Med. 2013;55:73–82. doi: 10.1016/j.freeradbiomed.2012.11.011
  101. Carracedo M, Artiach G, Arnardottir H, et al. The resolution of inflammation through omega-3 fatty acids in atherosclerosis, intimal hyperplasia, and vascular calcification. Semin Immunopathol. 2019;41(6):757–766. doi: 10.1007/s00281-019-00767-y
  102. Bäck M, Hansson GK. Omega-3 fatty acids, cardiovascular risk, and the resolution of inflammation. FASEB J. 2019;33(2):1536–1539. doi: 10.1096/fj.201802445R
  103. Hasturk H, Abdallah R, Kantarci A, et al. Resolvin E1 (RvE1) attenuates atherosclerotic plaque formation in diet and inflammation-induced atherogenesis. Arterioscler Thromb Vasc Biol. 2015;35(5):1123–1133. doi: 10.1161/ATVBAHA.115.305324
  104. Carracedo M, Artiach G, Witasp A, et al. The G-protein coupled receptor ChemR23 determines smooth muscle cell phenotypic switching to enhance high phosphate-induced vascular calcification. Cardiovasc Res. 2019;115(10):1557–1566. doi: 10.1093/cvr/cvy316
  105. Sato K, Yoshizawa H, Seki T, et al. Chemerin-9, a potent agonist of chemerin receptor (ChemR23), prevents atherogenesis. Clin Sci (Lond). 2019;133(16):1779–1796. doi: 10.1042/CS20190336
  106. Chen S, Han C, Bian S. Chemerin-9 attenuates experimental abdominal aortic aneurysm formation in ApoE (–/–) mice. J Oncol. 2021;2021:6629204. doi: 10.1155/2021/6629204
  107. Spirk M, Zimny S, Neumann M, et al. Chemerin-156 is the active isoform in human hepatic stellate cells. Int J Mol Sci. 2020; 21(20):7555. doi: 10.3390/ijms21207555
  108. Ferland D, Flood E, Garver H, et al. Different blood pressure responses in hypertensive rats following chemerin mRNA inhibition in dietary high fat compared to dietary high-salt conditions. Physiol Genom. 2019;51:553-561. doi: 10.1152/physiolgenomics.00050.2019

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Mechanism of action of chemerin through different receptors.

Download (350KB)

Copyright (c) 2023 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies