Хемерин в качестве кардиоваскулярного биологического маркёра: настоящее и будущее

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Кардиоваскулярная патология является основной причиной инвалидизации и смертности населения большинства развитых стран и признаётся мировым сообществом как проблема, достигшая масштабов пандемии. Важная задача современной кардиологии — поиск и изучение новых биологических маркёров.

В обзоре рассмотрен хемерин в качестве нового диагностического и прогностического маркёра при патологиях сердечно-сосудистой системы. Проведённые к настоящему времени исследования хемерина свидетельствуют о возможности применения его в качестве маркёра сердечно-сосудистой патологии. Фактические данные указывают на важную роль хемерина в развитии и прогрессировании сердечно-сосудистых заболеваний. В качестве адипокина хемерин модулирует уровень глюкозы и липидов, тем самым влияя на отложение липидов в эндотелии и прогрессирование атеросклероза. Как хемоаттрактант он облегчает мобилизацию и взаимодействие макрофагов с дендритными клетками и естественными клетками-киллерами в сосудистой системе и индуцирует эндотелиальный ангиогенез. Установленная роль хемерина в сосудистом воспалении, ангиогенезе и модуляции артериального давления обусловливает разработку терапевтических средств, нацеленных на данный биомаркёр, для лечения сердечно-сосудистых заболеваний. Несколько кандидатов, нацеленных на хемерин и сигнальный путь CMRK1, показали многообещающий потенциал в снижении сосудистой дисфункции в исследованиях in vitro и in vivo. Для оценки возможности их применения необходимы дальнейшие исследования, посвящённые анализу эффективности и безопасности новых хемерин-таргетных препаратов.

Об авторах

Амина Магомедовна Алиева

Российский национальный исследовательский медицинский университет имени Н.И. Пирогова

Автор, ответственный за переписку.
Email: amisha_alieva@mail.ru
ORCID iD: 0000-0001-5416-8579
SPIN-код: 2749-6427

к.м.н., доцент

Россия, 117997, Москва, ул. Островитянова, д. 1

Елена Владимировна Резник

Российский национальный исследовательский медицинский университет имени Н.И. Пирогова

Email: elenaresnik@gmail.com
ORCID iD: 0000-0001-7479-418X
SPIN-код: 3494-9080
ResearcherId: N-6856-2016

д.м.н., профессор

Россия, 117997, Москва, ул. Островитянова, д. 1

Наталья Вадимовна Теплова

Российский национальный исследовательский медицинский университет имени Н.И. Пирогова

Email: teplova.nv@yandex.ru
ORCID iD: 0000-0002-7181-4680
SPIN-код: 9056-1948

д.м.н., профессор

Россия, 117997, Москва, ул. Островитянова, д. 1

Ирина Евгеньевна Байкова

Российский национальный исследовательский медицинский университет имени Н.И. Пирогова

Email: 1498553@mail.ru
ORCID iD: 0000-0003-0886-6290
SPIN-код: 3054-8884

к.м.н., доцент

Россия, 117997, Москва, ул. Островитянова, д. 1

Лидия Мухамедовна Шнахова

Первый Московский государственный медицинский университет им. И.М. Сеченова (Сеченовский Университет)

Email: shnakhova_l_m@staff.sechenov.ru
ORCID iD: 0000-0003-3000-0987
SPIN-код: 5549-5823

врач

Россия, Москва

Ирина Александровна Котикова

Российский национальный исследовательский медицинский университет имени Н.И. Пирогова

Email: kotikova.ia@mail.ru
ORCID iD: 0000-0001-5352-8499
SPIN-код: 1423-7300

студент

Россия, 117997, Москва, ул. Островитянова, д. 1

Алпият Муртазалиевна Шехшебекова

Российский национальный исследовательский медицинский университет имени Н.И. Пирогова

Email: shekhshebekovaa@mail.ru
ORCID iD: 0000-0002-8600-9115

ординатор

Россия, 117997, Москва, ул. Островитянова, д. 1

Игорь Геннадиевич Никитин

Российский национальный исследовательский медицинский университет имени Н.И. Пирогова

Email: igor.nikitin.64@mail.ru
ORCID iD: 0000-0003-1699-0881
SPIN-код: 3595-1990

д.м.н., профессор

Россия, 117997, Москва, ул. Островитянова, д. 1

Список литературы

  1. Savarese G., Becher P.M., Lund L.H., et al. Global burden of heart failure: a comprehensive and updated review of epidemiology // Cardiovasc Res. 2023. Vol. 118, N 17. P. 3272–3287. doi: 10.1093/cvr/cvac013
  2. Butnariu L.I., Florea L., Badescu M.C., et al. Etiologic puzzle of coronary artery disease: how important is genetic component? // Life (Basel). 2022. Vol. 12, N 6. P. 865. doi: 10.3390/life12060865
  3. Кожевникова М.В., Беленков Ю.Н. Биомаркеры сердечной недостаточности: настоящее и будущее // Кардиология. 2021. Т. 61, № 5. С. 4–16. doi: 10.18087/cardio.2021.5.n1530
  4. Алиева А.М., Алмазова И.И., Пинчук Т.В., и др. Значение копептина в диагностике и прогнозе течения сердечно-сосудистых заболеваний // Клиническая медицина. 2020. Т. 98, № 3. С. 203–209. doi: 10.30629/0023-2149-2020-98-3-203-209
  5. Алиева А.М., Пинчук Т.В., Воронкова К.В., и др. Неоптерин — биомаркер хронической сердечной недостаточности (обзор современной литературы) // Consilium Medicum. 2021. Т. 23, № 10. С. 756–759. doi: 10.26442/20751753.2021.10.201113
  6. Macvanin M.T., Rizzo M., Radovanovic J., et al. Role of chemerin in cardiovascular diseases // Biomedicines. 2022. Vol. 10, N 11. P. 2970. doi: 10.3390/biomedicines10112970
  7. Yu M., Yang Y., Huang C., et al. Chemerin: a functional adipokine in reproductive health and diseases // Biomedicines. 2022. Vol. 10, N 8. P. 1910. doi: 10.3390/biomedicines10081910
  8. Zdanowicz K., Bobrus-Chociej A., Lebensztejn D.M. Chemerin as potential biomarker in pediatric diseases: a PRISMA-compliant study // Biomedicines. 2022. Vol. 10, N 3. P. 591. doi: 10.3390/biomedicines10030591
  9. Recinella L., Orlando G., Ferrante C., et al. Adipokines: new potential therapeutic target for obesity and metabolic, rheumatic, and cardiovascular diseases // Front Physiol. 2020. Vol. 11. P. 578966. doi: 10.3389/fphys.2020.578966
  10. Rourke J.L., Dranse H.J., Sinal C.J. Towards an integrative approach to understanding the role of chemerin in human health and disease // Obes Rev. 2013. Vol. 14, N 3. P. 245–262. doi: 10.1111/obr.12009
  11. Yan Q., Zhang Y., Hong J., et al. The association of serum chemerin level with risk of coronary artery disease in Chinese adults // Endocrine. 2012. Vol. 41, N 2. P. 281–288. doi: 10.1007/s12020-011-9550-6
  12. Dong B., Ji W., Zhang Y. Elevated serum chemerin levels are associated with the presence of coronary artery disease in patients with metabolic syndrome // Intern Med. 2011. Vol. 50, N 10. P. 1093–1097. doi: 10.2169/internalmedicine.50.5025
  13. Wang B., Kou W., Ji S., et al. Prognostic value of plasma adipokine chemerin in patients with coronary artery disease // Front Cardiovasc Med. 2022. Vol. 9. P. 968349. doi: 10.3389/fcvm.2022.968349
  14. Spiroglou S.G., Kostopoulos C.G., Varakis J.N., Papadaki H.H. Adipokines in periaortic and epicardial adipose tissue: differential expression and relation to atherosclerosis // J Atheroscler Thromb. 2010. Vol. 17, N 2. P. 115–130. doi: 10.5551/jat.1735
  15. Yoo H.J., Choi H.Y., Yang S.J., et al. Circulating chemerin level is independently correlated with arterial stiffness // J Atheroscler Thromb. 2012. Vol. 19, N 1. P. 59–66. doi: 10.5551/jat.9647
  16. Lehrke M., Becker A., Greif M., et al. Chemerin is associated with markers of inflammation and components of the metabolic syndrome but does not predict coronary atherosclerosis // Eur J Endocrinol. 2009. Vol. 161, N 2. P. 339–344. doi: 10.1530/EJE-09-0380
  17. Sotiropoulos G.P., Dalamaga M., Antonakos G., et al. Chemerin as a biomarker at the intersection of inflammation, chemotaxis, coagulation, fibrinolysis and metabolism in resectable non-small cell lung cancer // Lung Cancer. 2018. Vol. 125. P. 291–299. doi: 10.1016/j.lungcan.2018.10.010
  18. Treeck O., Buechler C. Chemerin signaling in cancer // Cancers (Basel). 2020. Vol. 12, N 11. P. 3085. doi: 10.3390/cancers12113085
  19. Nagpal S., Patel S., Jacobe H., et al. Tazarotene-induced gene 2 (TIG2), a novel retinoid-responsive gene in skin // J Invest Dermatol. 1997. Vol. 109, N 1. P. 91–95. doi: 10.1111/1523-1747.ep12276660
  20. Xie C., Chen Q. Adipokines: new therapeutic target for osteoarthritis? // Curr Rheumatol Rep. 2019. Vol. 21, N 12. P. 71. doi: 10.1007/s11926-019-0868-z
  21. Fischer T.F., Beck-Sickinger A.G. Chemerin — exploring a versatile adipokine // Biol Chem. 2022. Vol. 403, N 7. P. 625–642. doi: 10.1515/hsz-2021-0409
  22. Zabel B.A., Kwitniewski M., Banas M., et al. Chemerin regulation and role in host defense // Am J Clin Exp Immunol. 2014. Vol. 3, N 1. P. 1–19.
  23. Kwiecien K., Brzoza P., Bak M. The methylation status of the chemerin promoter region located from –252 to +258 bp regulates constitutive but not acute-phase cytokine-inducible chemerin expression levels // Sci Rep. 2020. Vol. 10, N 1. P. 13702. doi: 10.1038/s41598-020-70625-7
  24. Ferland D.J., Mullick A.E., Watts S.W. Chemerin as a driver of hypertension: a consideration // Am J Hypertens. 2020. Vol. 33, N 11. P. 975–986. doi: 10.1093/ajh/hpaa084
  25. Zhu L., Huang J., Wang Y., et al. Chemerin causes lipid metabolic imbalance and induces passive lipid accumulation in human hepatoma cell line via the receptor GPR1 // Life Sci. 2021. Vol. 278. P. 119530. doi: 10.1016/j.lfs.2021.119530
  26. Zhao L., Leung L.L., Morser J. Chemerin forms: their generation and activity // Biomedicines. 2022. Vol. 10, N 8. P. 2018. doi: 10.3390/biomedicines10082018
  27. Darios E.S., Winner B.M., Charvat T., et al. The adipokine chemerin amplifies electrical field-stimulated contraction in the isolated rat superior mesenteric artery // Am J Physiol Heart Circ Physiol. 2016. Vol. 311, N 2. P. H498–H507. doi: 10.1152/ajpheart.00998.2015
  28. De Henau O., Degroot G.N., Imbault V., et al. Signaling properties of chemerin receptors CMKLR1, GPR1 and CCRL2 // PLoS One. 2016. Vol. 11, N 10. P. e0164179. doi: 10.1371/journal.pone.0164179
  29. Wang L., Zhang Y., Guo Y., et al. Chemerin/CMKLR1 axis promotes the progression of proliferative diabetic retinopathy // Int J Endocrinol. 2021. Vol. 2021. P. 4468625. doi: 10.1155/2021/4468625
  30. Gudelska M., Dobrzyn K., Kiezun M., et al. The expression of chemerin and its receptors (CMKLR1, GPR1, CCRL2) in the porcine uterus during the oestrous cycle and early pregnancy and in trophoblasts and conceptuses // Animal. 2020. Vol. 14, N 10. P. 2116–2128. doi: 10.1017/S175173112000097X
  31. Fischer T., Czerniak A., Weib T., et al. Ligand-binding and -scavenging of the chemerin receptor GPR1 // Cell Mol Life Sci. 2021. Vol. 78, N 17-18. P. 6265–6281. doi: 10.1007/s00018-021-03894-8
  32. Kennedy A.J., Davenport A.P. International union of basic and clinical pharmacology CIII: chemerin receptors CMKLR1 (Chemerin1) and GPR1 (Chemerin2) nomenclature, pharmacology, and function // Pharmacol Rev. 2018. Vol. 70, N 1. P. 174–196. doi: 10.1124/pr.116.013177
  33. Yun H., Dumbell R., Hanna K., et al. The chemerin-CMKLR1 axis is functionally important for central regulation of energy homeostasis // Front Physiol. 2022. Vol. 13. P. 897105. doi: 10.3389/fphys.2022.897105
  34. Kaur J., Mattu H.S., Chatha K., Randeva H.S., et al. Chemerin in human cardiovascular disease // Vascul Pharmacol. 2018. Vol. 110. P. 1–6. doi: 10.1016/j.vph.2018.06.018
  35. Karampela I., Christodoulatos G.S., Vallianou N., et al. Circulating chemerin and its kinetics may be a useful diagnostic and prognostic biomarker in critically ill patients with sepsis: a prospective study // Biomolecules. 2022. Vol. 12, N 2. P. 301. doi: 10.3390/biom12020301
  36. Hillenbrand A., Weiss M., Knippschild U., et al. Sepsis-induced adipokine change with regard to insulin resistance // Int J Inflam. 2012. Vol. 2012. P. 972368. doi: 10.1155/2012/972368
  37. Jaworek J., Szklarczyk J., Kot M., et al. Chemerin alleviates acute pancreatitis in the rat through modulation of NF-κB signal // Pancreatology. 2019. Vol. 19, N 3. P. 401–408. doi: 10.1016/j.pan.2019.02.005
  38. Szpakowicz A., Szpakowicz M., Lapinska M., et al. Serum chemerin concentration is associated with proinflammatory status in chronic coronary syndrome // Biomolecules. 2021. Vol. 11, N 8. P. 1149. doi: 10.3390/biom11081149
  39. Goralski K.B., McCarthy T.C., Hanniman E.A., et al. Chemerin, a novel adipokine that regulates adipogenesis and adipocyte metabolism // J Biol Chem. 2007. Vol. 282, N 38. P. 28175–28188. doi: 10.1074/jbc.M700793200
  40. Jia J., Yu F., Xiong Y., et al. Chemerin enhances the adhesion and migration of human endothelial progenitor cells and increases lipid accumulation in mice with atherosclerosis // Lipids Health Dis. 2020. Vol. 19, N 1. P. 207. doi: 10.1186/s12944-020-01378-5
  41. Wittamer V., Franssen J.D., Vulcano M., et al. Specific recruitment of antigen-presenting cells by chemerin, a novel processed ligand from human inflammatory fluids // J Exp Med. 2003. Vol. 198, N 7. P. 977–985. doi: 10.1084/jem.20030382
  42. Yamawaki H., Kameshima S., Usui T., et al. A novel adipocytokine, chemerin exerts anti-inflammatory roles in human vascular endothelial cells // Biochem Biophys Res Commun. 2012. Vol. 423, N 1. P. 152–157. doi: 10.1016/j.bbrc.2012.05.103
  43. Bozaoglu K., Curran J.E., Stocker C.J., et al. Chemerin, a novel adipokine in the regulation of angiogenesis // J Clin Endocrinol Metab. 2010. Vol. 95, N 5. P. 2476–2485. doi: 10.1210/jc.2010-0042
  44. Ferland D.E., Watts S.W. Chemerin: a comprehensive review elucidating the need for cardiovascular research // Pharmacol Res. 2015. Vol. 99. P. 351–361. doi: 10.1016/j.phrs.2015.07.018
  45. Neves K.B., Lobato N.S., Lopes R.A., et al. Chemerin reduces vascular nitric oxide/cGMP signalling in rat aorta: a link to vascular dysfunction in obesity? // Clin Sci (Lond). 2014. Vol. 127, N 2. P. 111–122. doi: 10.1042/CS20130286
  46. Siragusa M., Fleming I. The eNOS signalosome and its link to endothelial dysfunction // Pflug Arch. 2016. Vol. 468, N 7. P. 1125–1137. doi: 10.1007/s00424-016-1839-0
  47. Xie Y., Liu L. Role of chemerin/ChemR23 axis as an emerging therapeutic perspective on obesity-related vascular dysfunction // J Transl Med. 2022. Vol. 20, N 1. P. 141. doi: 10.1186/s12967-021-03220-7
  48. Nakamura N., Naruse K., Kobayashi Y., et al. Chemerin promotes angiogenesis in vivo // Physiol Rep. 2018. Vol. 6, N 24. P. e13962. doi: 10.14814/phy2.13962
  49. Corre I., Paris F., Huot J. The p38 pathway, a major pleiotropic cascade that transduces stress and metastatic signals in endothelial cells // Oncotarget. 2017. Vol. 8, N 33. P. 55684–55714. doi: 10.18632/oncotarget.18264
  50. Dimitriadis G.K., Kaur J., Adya R., et al. Chemerin induces endothelial cell inflammation: activation of nuclear factor-kappa beta and monocyte-endothelial adhesion // Oncotarget. 2018. Vol. 9, N 24. P. 16678–16690. doi: 10.18632/oncotarget.24659
  51. Zhang R., Liu S., Guo B., et al. Chemerin induces insulin resistance in rat cardiomyocytes in part through the ERK1/2 signaling pathway // Pharmacology. 2014. Vol. 94, N 5-6. P. 259–264. doi: 10.1159/000369171
  52. Neves K.B., Nguyen Dinh Cat A., Alves-Lopes R., et al. Chemerin receptor blockade improves vascular function in diabetic obese mice via redox-sensitive and Akt-dependent pathways // Am J Physiol Heart Circ Physiol. 2018. Vol. 315, N 6. P. H1851–H1860. doi: 10.1152/ajpheart.00285.2018
  53. Xie Y., Huang Y., Ling X., et al. Chemerin/CMKLR1 axis promotes inflammation and pyroptosis by activating NLRP3 inflammasome in diabetic cardiomyopathy rat // Front Physiol. 2020. Vol. 11. P. 381. doi: 10.3389/fphys.2020.00381
  54. Lin X., Yang Y., Qu J., et al. Aerobic exercise decreases chemerin/CMKLR1 in the serum and peripheral metabolic organs of obesity and diabetes rats by increasing PPARγ // Nutr Metab (Lond). 2019. Vol. 16. P. 17. doi: 10.1186/s12986-019-0344-9
  55. Jun L., Lin-Lin S., Hui S. Chemerin promotes microangiopathy in diabetic retinopathy via activation of ChemR23 in rat primary microvascular endothelial cells // Mol Vis. 2021. Vol. 27. P. 575–587.
  56. Rodríguez-Penas D., Feijóo-Bandín S., García-Rúa V., et al. The adipokine chemerin induces apoptosis in cardiomyocytes // Cell Physiol Biochem. 2015. Vol. 37, N 1. P. 176–192. doi: 10.1159/000430343
  57. Yamamoto A., Sagara A., Otani K., et al. Chemerin-9 stimulates migration in rat cardiac fibroblasts in vitro // Eur J Pharmacol. 2021. Vol. 912. P. 174566. doi: 10.1016/j.ejphar.2021.174566
  58. Flood E.D., Watts S.W. Endogenous chemerin from PVAT amplifies electrical field-stimulated arterial contraction: use of the chemerin knockout rat // Int J Mol Sci. 2020. Vol. 21, N 17. P. 6392. doi: 10.3390/ijms21176392
  59. Yamamoto A., Matsumoto K., Hori K., et al. Acute intracerebroventricular injection of chemerin-9 increases systemic blood pressure through activating sympathetic nerves via CMKLR1 in brain // Pflugers Arch. 2020. Vol. 472, N 6. P. 673–681. doi: 10.1007/s00424-020-02391-4
  60. Wang J.X., Wang X.L., Xu Z.Q., et al. Chemerin-9 in paraventricular nucleus increases sympathetic outflow and blood pressure via glutamate receptor-mediated ROS generation // Eur J Pharmacol. 2022. N 936. P. 175343. doi: 10.1016/j.ejphar.2022.175343
  61. Peng L., Chen Y., Li Y., et al. Chemerin regulates the proliferation and migration of pulmonary arterial smooth muscle cells via the ERK1/2 signaling pathway // Front Pharmacol. 2022. Vol. 13. P. 767705. doi: 10.3389/fphar.2022.767705
  62. Kutlay Ö., Kaygısız Z., Kaygısız B. The effect of chemerin on cardiac parameters and gene expressions in isolated perfused rat heart // Balkan Med J. 2019. Vol. 36, N 1. P. 43–48. doi: 10.4274/balkanmedj.2017.1787
  63. Liu H., Xiong W., Luo Y., et al. Adipokine chemerin stimulates progression of atherosclerosis in ApoE–/– mice // Biomed Res Int. 2019. Vol. 2019. P. 7157865. doi: 10.1155/2019/7157865
  64. van der Vorst E.P.C., Mandl M., Müller M., et al. Hematopoietic ChemR23 (chemerin receptor 23) fuels atherosclerosis by sustaining an M1 macrophage-phenotype and guidance of plasmacytoid dendritic cells to murine lesions-brief report // Arterioscler Thromb Vasc Biol. 2019. Vol. 39, N 4. P. 685–693. doi: 10.1161/ATVBAHA.119.312386
  65. Lachine N.A., Elnekiedy A.A., Megallaa M.H., et al. Serum chemerin and high-sensitivity C reactive protein as markers of subclinical atherosclerosis in Egyptian patients with type 2 diabetes // Ther Adv Endocrinol Metab. 2016. Vol. 7, N 2. P. 47–56. doi: 10.1177/2042018816637312
  66. Tan L., Chen Z., Sun F., et al. Placental trophoblast-specific overexpression of chemerin induces preeclampsia-like symptoms // Clin Sci (Lond). 2022. Vol. 136, N 4. P. 257–272. doi: 10.1042/CS20210989
  67. Chou H.H., Teng M.S., Hsu L.A., et al. Circulating chemerin level is associated with metabolic, biochemical and haematological parameters-A population-based study // Clin Endocrinol (Oxf). 2021. Vol. 94, N 6. P. 927–939. doi: 10.1111/cen.14441
  68. Ebert T., Gebhardt C., Scholz M., et al. Relationship between 12 adipocytokines and distinct components of the metabolic syndrome // J Clin Endocrinol Metab. 2018. Vol. 103, N 3. P. 1015–1023. doi: 10.1210/jc.2017-02085
  69. Wu Q., Chen Y., Chen S., et al. Correlation between adiponectin, chemerin, vascular endothelial growth factor and epicardial fat volume in patients with coronary artery disease // Exp Ther Med. 2020. Vol. 19, N 2. P. 1095–1102. doi: 10.3892/etm.2019.8299
  70. El Dayem S.M., Battah A.A., El Bohy Ael M., et al. Relationship of plasma level of chemerin and vaspin to early atherosclerotic changes and cardiac autonomic neuropathy in adolescent type 1 diabetic patients // J Pediatr Endocrinol Metab. 2015. Vol. 28, N 3-4. P. 265–273. doi: 10.1515/jpem-2014-0215
  71. Maghsoudi Z., Kelishadi R., Hosseinzadeh-Attar M.J. The comparison of chemerin, adiponectin and lipid profile indices in obese and non-obese adolescents // Diabetes Metab Syndr. 2016. Vol. 10, N 2 (suppl. 1). P. S43–S46. doi: 10.1016/j.dsx.2016.01.020
  72. Akgul Balaban Y., Yilmaz N., Kalayci M., et al. Irisin and chemerin levels in patients with type 2 diabetes mellitus // Acta Endocrinol (Buchar). 2019. Vol. 15, N 4. P. 442–446. doi: 10.4183/aeb.2019.442
  73. Zhou Z., Chen H., Ju H., Sun M. Circulating chemerin levels and gestational diabetes mellitus: a systematic review and meta-analysis // Lipids Health Dis. 2018. Vol. 17, N 1. P. 169. doi: 10.1186/s12944-018-0826-1
  74. Demir C.F., Ataş İ.N., Balgetir F., et al. Increased serum chemerin levels associated with carotid intima-media thickness // Arq Neuropsiquiatr. 2021. Vol. 79, N 3. P. 189–194. doi: 10.1590/0004-282X-ANP-2020-0195
  75. Yanofsky R., Sancho C., Gasbarrino K., et al. Expression of resistin, chemerin, and chemerin’s receptor in the unstable carotid atherosclerotic plaque // Stroke. 2021. Vol. 52, N 8. P. 2537–2546. doi: 10.1161/STROKEAHA.120.030228
  76. Kammerer A., Staab H., Herberg M., et al. Increased circulating chemerin in patients with advanced carotid stenosis // BMC Cardiovasc Disord. 2018. Vol. 18, N 1. P. 65. doi: 10.1186/s12872-018-0803-7
  77. Ji Q., Lin Y., Liang Z., et al. Chemerin is a novel biomarker of acute coronary syndrome but not of stable angina pectoris // Cardiovasc Diabetol. 2014. Vol. 13. P. 145. doi: 10.1186/s12933-014-0145-4
  78. Wójcik M., Kozioł-Kozakowska A., Januś D., et al. Circulating chemerin level may be associated with early vascular pathology in obese children without overt arterial hypertension — preliminary results // J Pediatr Endocrinol Metab. 2020. Vol. 33, N 6. P. 729–734. doi: 10.1515/jpem-2019-0460
  79. Gu P., Jiang W., Lu B., Shi Z. Chemerin is associated with inflammatory markers and metabolic syndrome phenotypes in hypertension patients // Clin Exp Hypertens. 2014. Vol. 36, N 5. P. 326–332. doi: 10.3109/10641963.2013.827697
  80. Ismaiel A., Ashfaq M.Z., Leucuta D.C., et al. Chemerin levels in acute coronary syndrome: systematic review and meta-analysis // Lab Med. 2022. Vol. 53, N 6. P. 552–560. doi: 10.1093/labmed/lmac059
  81. Liang Z., Yu K., Wu B., et al. The elevated levels of plasma chemerin and C-reactive protein in patients with acute coronary syndrome // Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2015. Vol. 31, N 7. P. 953–956.
  82. Aronis K.N., Sahin-Efe A., Chamberland J.P., et al. Chemerin levels as predictor of acute coronary events: a case-control study nested within the veteran’s affairs normative aging study // Metabolism. 2014. Vol. 63, N 6. P. 760–766. doi: 10.1016/j.metabol.2014.02.013
  83. Ateş A., Arslan U., Aksakal A., et al. Plasma chemerin levels are increased in st elevation myocardial infarction patients with high thrombus burden // Cardiol Res Pract. 2018. N 2018. P. 5812704. doi: 10.1155/2018/5812704
  84. Kostopoulos C.G., Spiroglou S.G., Varakis J.N., et al. Chemerin and CMKLR1 expression in human arteries and periadventitial fat: a possible role for local chemerin in atherosclerosis? // BMC Cardiovasc Disord. 2014. Vol. 14. P. 56. doi: 10.1186/1471-2261-14-56
  85. Er L.K., Hsu L.A., Juang J.J., et al. Circulating chemerin levels, but not the RARRES2 polymorphisms, predict the long-term outcome of angiographically confirmed coronary artery disease // Int J Mol Sci. 2019. Vol. 20, N 5. P. 1174. doi: 10.3390/ijms20051174
  86. Lurins J., Lurina D., Svirskis S., et al. Impact of several proinflammatory and cell degradation factors in patients with aortic valve stenosis // Exp Ther Med. 2019. Vol. 17, N 4. P. 2433–2442. doi: 10.3892/etm.2019.7254
  87. Zhou X., Tao Y., Chen Y., et al. Serum chemerin as a novel prognostic indicator in chronic heart failure // J Am Heart Assoc. 2019. Vol. 8, N 15. P. e012091. doi: 10.1161/JAHA.119.012091
  88. Chen D., Wang J., Fu J. Serum chemerin predicts the prognosis of patients with dilated cardiomyopathy // Heart Surg Forum. 2020. Vol. 23, N 3. P. E276–E280. doi: 10.1532/hsf.2885
  89. Zhang G., Xiao M., Zhang L., et al. Association of serum chemerin concentrations with the presence of atrial fibrillation // Ann Clin Biochem. 2017. Vol. 54, N 3. P. 342–347. doi: 10.1177/0004563216664367
  90. Daskalakis G., Bellos I., Nikolakea M., et al. The role of serum adipokine levels in preeclampsia: a systematic review // Metabolism. 2020. Vol. 106. P. 154172. doi: 10.1016/j.metabol.2020.154172
  91. Janmohammadi P., Raeisi T., Zarei M., et al. Adipocytokines in obstructive sleep apnea: a systematic review and meta-analysis // Respir Med. 2023. Vol. 208. P. 107122. doi: 10.1016/j.rmed.2023.107122
  92. Ashtary-Larky D., Kashkooli S., Bagheri R., et al. The effect of exercise training on serum concentrations of chemerin in patients with metabolic diseases: a systematic review and meta-analysis // Arch Physiol Biochem. 2021. P. 1–10. doi: 10.1080/13813455.2021.1892149
  93. Liu M., Lin X., Wang X. Decrease in serum chemerin through aerobic exercise plus dieting and its association with mitigation of cardio-metabolic risk in obese female adolescents // J Pediatr Endocrinol Metab. 2018. Vol. 31, N 2. P. 127–135. doi: 10.1515/jpem-2017-0431
  94. Kim D.I., Lee D.H., Hong S., et al. Six weeks of combined aerobic and resistance exercise using outdoor exercise machines improves fitness, insulin resistance, and chemerin in the Korean elderly: a pilot randomized controlled trial // Arch Gerontol Geriatr. 2018. Vol. 75. P. 59–64. doi: 10.1016/j.archger.2017.11.006
  95. Lendeckel F., Zylla S., Markus M.R.P., et al. Association of cardiopulmonary exercise capacity and adipokines in the general population // Int J Sports Med. 2022. Vol. 43, N 7. P. 616–624. doi: 10.1055/a-1699-2380
  96. Ministrini S., Ricci M.A., Nulli Migliola E., et al. Chemerin predicts carotid intima-media thickening in severe obesity // Eur J Clin Invest. 2020. P. e13256. doi: 10.1111/eci.13256
  97. Askarpour M., Alizadeh S., Hadi A., et al. Effect of bariatric surgery on the circulating level of adiponectin, chemerin, plasminogen activator inhibitor-1, leptin, resistin, and visfatin: a systematic review and meta-analysis // Horm Metab Res. 2020. Vol. 52, N 4. P. 207–215. doi: 10.1055/a-1129-6785
  98. Jannaway M., Torrens C., Warner J.A., et al. Resolvin E1, resolvin D1 and resolvin D2 inhibit constriction of rat thoracic aorta and human pulmonary artery induced by the thromboxane mimetic U46619 // Br J Pharmacol. 2018. Vol. 175, N 7. P. 1100–1108. doi: 10.1111/bph.14151
  99. Goralski K.B., Sinal C.J. Elucidation of chemerin and chemokine-like receptor-1 function in adipocytes by adenoviral-mediated shRNA knockdown of gene expression // Methods Enzymol. 2009. Vol. 460. P. 289–312. doi: 10.1016/s0076-6879(09)05214-8
  100. Shen W., Tian C., Chen H., et al. Oxidative stress mediates chemerin-induced autophagy in endothelial cells // Free Radic Biol Med. 2013. Vol. 55. P. 73–82. doi: 10.1016/j.freeradbiomed.2012.11.011
  101. Carracedo M., Artiach G., Arnardottir H., Bäck M. The resolution of inflammation through omega-3 fatty acids in atherosclerosis, intimal hyperplasia, and vascular calcification // Semin Immunopathol. 2019. Vol. 41, N 6. P. 757–766. doi: 10.1007/s00281-019-00767-y
  102. Bäck M., Hansson G.K. Omega-3 fatty acids, cardiovascular risk, and the resolution of inflammation // FASEB J. 2019. Vol. 33, N 2. P. 1536–1539. doi: 10.1096/fj.201802445R
  103. Hasturk H., Abdallah R., Kantarci A., et al. Resolvin E1 (RvE1) attenuates atherosclerotic plaque formation in diet and inflammation-induced atherogenesis // Arterioscler Thromb Vasc Biol. 2015. Vol. 35, N 5. P. 1123–1133. doi: 10.1161/ATVBAHA.115.305324
  104. Carracedo M., Artiach G., Witasp A., et al. The G-protein coupled receptor ChemR23 determines smooth muscle cell phenotypic switching to enhance high phosphate-induced vascular calcification // Cardiovasc Res. 2019. Vol. 115, N 10. P. 1557–1566. doi: 10.1093/cvr/cvy316
  105. Sato K., Yoshizawa H., Seki T., et al. Chemerin-9, a potent agonist of chemerin receptor (ChemR23), prevents atherogenesis // Clin Sci (Lond). 2019. Vol. 133, N 16. P. 1779–1796. doi: 10.1042/CS20190336
  106. Chen S., Han C., Bian S. Chemerin-9 attenuates experimental abdominal aortic aneurysm formation in ApoE (-/-) mice // J Oncol. 2021. Vol. 2021. P. 6629204. doi: 10.1155/2021/6629204
  107. Spirk M., Zimny S., Neumann M., et al. Chemerin-156 is the active isoform in human hepatic stellate cells // Int J Mol Sci. 2020. Vol. 21, N 20. P. 7555. doi: 10.3390/ijms21207555
  108. Ferland D., Flood E., Garver H., et al. Different blood pressure responses in hypertensive rats following chemerin mRNA inhibition in dietary high fat compared to dietary high-salt conditions // Physiol Genom. 2019. N 51. P. 553–561. doi: 10.1152/physiolgenomics.00050.2019

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Механизм действия хемерина через различные рецепторы.

Скачать (350KB)

© Эко-Вектор, 2023

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах