Bioleaching of Nickel-Containing Metallurgical Slag by Chemolithotrophic Microorganisms at Various Temperatures

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The bioleaching process of metallurgical slag containing nickel and copper was investigated at temperatures of 40, 45, and 50°C. The experiments involved microbial communities cultivated at 40 and 45°C, which comprised the bacteria Leptospirillum ferriphilum and Sulfobacillus thermosulfidooxidans. The microbial community established at 50°C included representatives of S. thermosulfidooxidans and Acidiplasma sp. The findings indicate that the dissolution of the solid phase and the oxidation of ferrous iron by microorganisms reached their highest levels at 45°C. Under these conditions, the majority of copper (95.5–100%) and nickel (92.3–100%) released into solution within the first day of bioleaching. Kinetic studies of chemical leaching of non-ferrous metals during the initial four hours demonstrated that the presence of 5 g/l Fe3+ resulted in the extraction of 93.0% nickel and 94.3% copper, whereas, in the absence of Fe3+, 75.0% of nickel and 77.8% of copper were extracted.

About the authors

N. V. Fomchenko

Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences

Moscow, Russia

G. V. Novikov

Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences

Moscow, Russia

V. S. Melamud

Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences

Moscow, Russia

M. I. Muravyov

Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences

Email: maxmuravyov@inmi.ru
Moscow, Russia

References

  1. Schodde R., Guj P. // Geosyst. Geoenviron. 2025. V. 4. P. 100356. https://doi.org/10.1016/j.geogeo.2025.100356
  2. Zhang Z., Zhang W., Zhang Z., Chen X. // China Geol. 2025. V. 8. P. 187–213. 3. https://doi.org/10.31035/cg2024124
  3. Kalungi P., Yao Z., Huang H. // Materials. 2024. V. 17. P. 4389. https://doi.org/10.3390/ma17174389
  4. Đorđević T., Tasev G., Aicher C., Potysz A., Nagl P., Lengauer C.L. et al. // Appl. Geochem. 2024. V. 170. https://doi.org/10.1016/j.apgeochem.2024.106068
  5. Kupczak K., Warchulski R., Ettler V., Mihaljevič M. // J. Geochem. Explor. 2025. V. 273. P. 107743. https://doi.org/10.1016/j.gexplo.2025.107743
  6. Yanning S., Qiao H., Qiong F., Chao W., Jianghua Z. // J. Build. Eng. 2024. V. 96. P. 110632. https://doi.org/10.1016/j.jobe.2024.110632
  7. Afaque M., Roy S., Khan R.A. // Water and Energy Int. 2025. V. 67. P. 20–27.
  8. Gurieva V.A., Ilyina A.A. // 2024. V. 81. P. 34–38. https://doi.org/10.1007/s10717-024-00654-5
  9. Yan Y., Sun S., Yang K., Xiao F., Tu G., Sui C., Yu K. // Environ. Sci. Pollut. Res. 2025. V. 32. P. 4523–4538. https://doi.org/10.1007/s11356-025-35909-3
  10. Klaffenbach E., Montenegro V., Guo M., Blanpain B. // J. Sustainable Met. 2023. V. 9. P. 468–496. https://doi.org/10.1007/s40831-023-00683-4
  11. Sethurajan M., van Hullebusch E.D., Nanchariah Y.V. // J. Environ. Manage. 2018. V. 211. P. 138–153. https://doi.org/10.1016/J.JENVMAN.2018.01.035
  12. Potysz A., Pȩdziwiatr A., Hedwig S., Lenz M. // J. Environ. Chem. Eng. 2020. V. 8. P. 104450. https://doi.org/10.1016/J.JECE.2020.104450
  13. Muravyov M.I., Fomchenko N.V., Kondrat’eva T.F. // Appl. Biochem. Microbiol. 2011. V. 47. P. 607–614. https://doi.org/10.1134/S0003683811060093
  14. Fomchenko N.V., Muravyov M.I. // Appl. Biochem. Microbiol. 2017. V. 53. P. 73–77. https://doi.org/10.1134/S0003683817010197
  15. Karimi Darvanjooghi M.H., Magdouli S., Brar S.K. // World J. Microbiol. Biotechnol. 2024. V. 40. P. 67. https://doi.org/10.1007/s11274-024-03887-2
  16. Roberto F.F., Schippers A. // Appl. Microbiol. Biotechnol. 2022. V. 106. P. 5913–5928. https://doi.org/10.1007/s00253-022-12085-9
  17. Fomchenko N., Muravyov M. // Minerals. 2020. V. 10. P. 1097. https://doi.org/10.3390/min10121097
  18. Kaksonen A.H., Särkijärvi S., Puhakka J.A., Peuraniemi E., Junnikkala S., Tuovinen O.H. // Hydrometallurgy. 2016. V. 159. P. 46–53. https://doi.org/10.1016/J.HYDROMET.2015.10.032
  19. Potysz A., Lens P.N.L., van de Vossenberg J., Rene E.R., Grybos M., Guibaud G., et al. // Appl. Geochem. 2016. V. 68. P. 39–52. https://doi.org/10.1016/J.APGEOCHEM.2016.03.006
  20. Wang J., Huang Q., Li T., Xin B., Chen S., Guo X. et al. // J. Environ. Manage. 2015. V. 159. P. 11–17, https://doi.org/10.1016/J.JENVMAN.2015.05.013
  21. Fomchenko N.V., Murav’ev M.I. // Appl. Biochem. Microbiol. 2015. V. 51. P. 388–392. https://doi.org/10.1134/S0003683815040079
  22. Silverman M.P., Lundgren D.G. // J. Bacteriol. 1959. V. 77. P. 642–647. https://doi.org/10.1128/jb.77.5.642-647.1959
  23. Davis. D.G., Jacobsen W.R. // Anal. Chem. 1960. V. 32. P. 215–217. https://doi.org/10.1021/ac60158a024
  24. Филиппова Н.А. Фазовый анализ руд и продуктов их переработки / Ред. Абрамова В.Л. М.: Химия, 1975. 280 с.
  25. Brierley C.L., Brierley J.A. // Appl. Microbiol. Biotechnol. 2013. V. 97. P. 7543–7552. https://doi.org/10.1007/s00253-013-5095-3
  26. Olson G.J., Brierley J.A., Brierley C.L. // Appl. Microbiol. Biotechnol. 2003. V. 63. P. 249–257. https://doi.org/10.1007/s00253-003-1404-6

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).