The first example of synthesis of a new class of spiroboracarbocycles via cycloboration of methylenecycloalkanes with PhBCl2 catalyzed by Cp2TiCl2

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Cp2TiCl2-catalyzed cycloboration of methylenecycloalkanes with PhBCl2 in the presence of metallic Mg to obtain a novel spiroboracarbocycles in good yields (70-80%) is reported for the first time. The structure and properties of spiro-fused boriranes were studied using 11B, 1H, 13C NMR spectroscopy and DOSY experiments. 1-Phenyl-substituted boraspiranes are stable in solution at room temperature for a day.

About the authors

L. I Tulyabaeva

Institute of Petrochemistry and Catalysis, Ufa Federal Research Centre, Russian Academy of Sciences

Email: khusainova_ink@mail.ru

R. R Salakhutdinov

Institute of Petrochemistry and Catalysis, Ufa Federal Research Centre, Russian Academy of Sciences

Email: khusainova_ink@mail.ru

T. V Tyumkina

Institute of Petrochemistry and Catalysis, Ufa Federal Research Centre, Russian Academy of Sciences

Email: khusainova_ink@mail.ru

A. R Tulyabaev

Institute of Petrochemistry and Catalysis, Ufa Federal Research Centre, Russian Academy of Sciences

Email: khusainova_ink@mail.ru

U. M Dzhemilev

Institute of Petrochemistry and Catalysis, Ufa Federal Research Centre, Russian Academy of Sciences

Email: khusainova_ink@mail.ru

References

  1. Khusainova L.I., Khafizova L.O., Tyumkina T.V., Ryazanov K.S., Dzhemilev U.M. J. Organomet. Chem. 2017, 832, 12-17. doi: 10.1016/j.jorganchem.2017.01.009
  2. Хусаинова Л.И., Хафизова Л.О., Тюмкина Т.В., Джемилев У.М. ЖОрХ. 2015, 51, 1551-1557.
  3. Khusainova L.I., Khafizova L.O., Tyumkina T.V., Dzhemilev U.M. Russ. J. Org. Chem. 2015, 51, 1517-1523. doi: 10.1134/S1070428015110019
  4. Хусаинова Л.И., Хафизова Л.О., Тюмкина Т.В., Джемилев У.М. ЖОХ. 2016, 86, 1046-1049.
  5. Khusainova L.I., Khafizova L.O., Tyumkina T.V., Dzhemilev U.M. Russ. J. Gen. Chem. 2016, 86, 1038-1041. doi: 10.1134/S1070363216060335
  6. Khusainova L.I., Khafizova L.O., Tyumkina T.V., Ryazanov K.S., Popodko N.R., Dzhemilev U.M. J. Organomet. Chem. 2018, 873, 73-77. doi: 10.1016/j.jorganchem.2018.08.005
  7. Джемилев У.М., Хусаинова Л.И., Рязанов К.С., Хафизова Л.О. Изв. АН. Сер. хим. 2021, 70, 1851-1892.
  8. Dzhemilev U.M., Khusainova L.I., Ryazanov K.S., Khafizova L.O. Russ. Chem. Bull. Int. Ed. 2021, 70, 1851-1892. doi: 10.1007/s11172-021-3292-2
  9. Rao Y.-L., Amarne H., Zhao S.-B., McCormick T.M., Martić S., Sun Y., Wang R.-Y., Wang S. J. Am. Chem. Soc. 2008, 130, 12898-12900. doi: 10.1021/ja8052046
  10. Baik C., Hudson Z.M., Amarne H., Wang S. J. Am. Chem. Soc. 2009, 131, 14549-14559. doi: 10.1021/ja906430s
  11. Rao Y.-L., Amarne H., Wang S. Coord. Chem. Rev. 2012, 256, 759-770. doi: 10.1016/j.ccr.2011.11.009
  12. Mellerup S.K., Wang S. Sci. China Mater. 2018, 61, 1249-1256. doi: 10.1007/s40843-018-9306-8
  13. McFadden T.R., Fang Ch., Geib S.J., Merling E., Liu P., Curran D.P. J. Am. Chem. Soc. 2017, 139, 1726-1729. doi: 10.1021/jacs.6b09873
  14. Dai W., McFadden T.R., Curran D.P., Früchtl H.A., Walton J.C. J. Am. Chem. Soc. 2018, 140, 15868-15875. doi: 10.1021/jacs.8b09288
  15. Bissinger P., Braunschweig H., Kraft K., Kupfer T. Angew. Chem. Int. Ed. 2011, 50, 4704-4707. doi: 10.1002/anie.201007543
  16. Braunschweig H., Claes C., Damme A., Deißenberger A., Dewhurst R.D., Hörl C., Kramer T. Chem. Comm. 2015, 51, 1627-1630. doi: 10.1039/c4cc09036e
  17. Wehrmann R., Klusik H., Berndt A. Angew. Chem. Int. Ed. 1984, 23, 369-370. doi: 10.1002/anie.198403691
  18. Klusik H., Berndt A. Angew. Chem. Int. Ed. 1983, 22, 877-878. doi: 10.1002/anie.198308771
  19. Pues C., Baum G., Massa W., Berndt A., Z. Naturforsch. B. 1988, 43, 275-279. doi: 10.1515/znb-1988-0307
  20. Glaser B., Mayer E.P., Nöth H., Rattay W., Wietelmann U. Z. Naturforsch. B. 1988, 43, 449-456. doi: 10.1515/znb-1988-0411
  21. Balzereit C., Kybart C., Winkler H.-J., Massa W., Berndt A. Angew. Chem. Int. Ed. 1994, 33, 1487-1489. doi: 10.1002/anie.199414871
  22. Mayer P., Noth H. Chem. Ber. 1993, 126, 1551-1557. doi: 10.1002/cber.19931260708
  23. Wrackmeyer B. Annu. Rep. NMR Spectrosc. 1988, 20, 61-203. doi: 10.1016/s0066-4103(08)60170-2
  24. Brown H.C., Zaidlewicz M. J. Am. Chem. Soc. 1976, 98, 4917-4925. doi: 10.1021/ja00432a037
  25. Klebe J.F., Finkbeiner H., White D.M. J. Am. Chem. Soc. 1966, 88, 3390-3395. doi: 10.1021/ja00966a038
  26. Wilkey J.D., Schuster G.B. J. Am. Chem. Soc. 1991, 113, 2149-2155. doi: 10.1021/ja00006a037
  27. Midland M.M., Brown H.C. J. Am. Chem. Soc. 1973, 95, 4069-4070. doi: 10.1021/ja00793a052
  28. Sobota P., Pluzinski T., Jezowska-Trzebiatowska B., Rummel S. J. Organomet. Chem. 1980, 185, 69-74. doi: 10.1016/s0022-328x(00)94401-2
  29. Eisch J.J., Boleslawski M.P., Tamao K. J. Org. Chem. 1989, 54, 1627-1634. doi: 10.1021/jo00268a025
  30. Tomboulian P., Amick D., Beare S., Dumke K., Hart D., Hites R., Metzger A., Nowak R. J. Org. Chem. 1973, 38, 322-325. doi: 10.1021/jo00942a026
  31. Fitjer L., Quabeck U. Synth. Commun. 1985, 15, 855-864. doi: 10.1080/00397918508063883
  32. Wittig G., Schoellkopf U. Org. Synth., Coll. 1960, 40, 66. doi: 10.15227/orgsyn.040.0066
  33. Barluenga J., Fernandez-Simon J.L., Concellon J.M., Yus M. J. Chem. Soc. Perkin Trans. 1. 1988, 1, 3339-3343. doi: 10.1039/p19880003339
  34. Lebel H., Davi M., Díez-González S., Nolan S.P. J. Org. Chem. 2007, 72, 144-149. doi: 10.1021/jo061781a
  35. Masuda Y., Ikeshita D., Murakami M. Helv. Chim. Acta. 2021, 104, e2000228. doi: 10.1002/hlca.202000228
  36. Kobayashi S., Kawamoto T., Uehara S., Fukuyama T., Ryu I. Org. Lett. 2010, 12, 1548-1551. doi: 10.1021/ol1002847

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies